Introduction to distance sampling

David L Miller

Overview

- Line transects
- Simple estimates of abundance
- Why is detectability important?
- What is a detection function?
- First look at fitting models in R

How many animals are there? (500!)

General strategy

- Take a sample in some fixed areas
- Find density/abundance in covered area
- Multiply up to get abundance

General strategy (What did we assume?)

- Take a sample in some fixed areas
 - Sample is representative
- Find density/abundance in covered area
 - Estimator is "good"
- Multiply up to get abundance
 - Sample is representative

Plot sampling

- Surveyed 10 quadrats (each 0.1^2 units)
 - Total covered area $a = 10 * 0.1^2 = 0.1$
- Saw n = 59 animals
- Estimated density $\hat{D} = n/a = 590$
- Total area A = 1
- Estimated abundance $\hat{N} = \hat{D}A = 590$

Strip transect

- Surveyed 4 lines (each 1 * 0.025 units)
 - Total covered area a = 4 * 1 * 0.025 = 0.1
- Saw n = 57 animals
- Estimated density $\hat{D} = n/a = 570$
- Total area A = 1
- Estimated abundance $\hat{N} = \hat{D}A = 570$

Detectability

Detectability matters!

- We've assumed certain detection so far
- This rarely happens in the field
- Distance to the **object** is important
 - (Other things too, more on that later)
 - Detectability should decrease with increasing distance

Distance and detectability

Credit Scott and Mary Flanders

Recording distances is more efficient

- Plots: what if an animal is *just* outside the box?
- Strips: what if an animal is *just* outside the strip?
- Line transects: record everything (within reason), then discard later
 - Decide strip width (truncation distance) later

Detection as a function of distance

- Model probability of detection, given distance
- Fit models for the curve
- Derive a probability of detection from this model

Line transect

Line transects - distances

- Distances from the line (sampler) to animal
- Now we recorded distances, what do they look like?
- "Fold" distribution over, left/right doesn't matter
- Drop-off in # observations w. increasing distance

Distance sampling animation

Survey area

Histogram of observed distances

"You should model that"

Detection function

Using distance information

- Detection function: $\mathbb{P}(\text{ detection } | \text{ at distance } x)$
- Integrate out the conditioning $\Rightarrow \mathbb{P}(\text{ detection }) = \hat{p}$
- "Inflate" n by \hat{p} to estimate abundance

Integrating out distance

Distance

Distance sampling estimate

- Surveyed 5 lines (each 1 * 0.025 units)
 - Total covered area a = 5 * 1 * 0.02 = 0.2
- Probability of detection $\hat{p} = \int_0^w \frac{g(x)}{w} dx = 0.5981$
- Saw n = 60 animals
- Inflate to $n/\hat{p} = 100.31$
- Estimated density $\hat{D} = \frac{n/\hat{p}}{a} = 502$
- Total area A = 1
- Estimated abundance $\hat{N} = \hat{D}A = 502$

Summary: line transects

- Efficient survey design
- Relax the assumption of perfect detection
- Exchange assumptions for data
- More information = better inference

Assumptions

Assumptions

- 1. Animals are distributed independent of lines
- 2. On the line, detection is certain
- 3. Distances are recorded correctly
- 4. Animals don't move before detection

Animals are distributed independent of

- When transects follow features
- Difficult to work out detectability vs. distribution

On the line, detection is certain

- Perception bias
- Availability bias
- Don't know y axis scale

Perception bias

Credit Minette Layne

Credit MAKY_OREL

Distances are recorded correctly

 $\mathsf{F}_{\mathsf{r}}^{\mathsf{r}} = \mathsf{F}_{\mathsf{r}}^{\mathsf{r}} \mathsf{r}_{\mathsf{r}}^{\mathsf{r}} \mathsf{r}} \mathsf{r}_{\mathsf{r}}^{\mathsf{r}} \mathsf{r}_{\mathsf{r}}^{\mathsf{r}} \mathsf{r}_{\mathsf{r}}^{\mathsf{r}} \mathsf{r}_{\mathsf{r}}^{\mathsf{r}} \mathsf{r}_{\mathsf{r}}^{\mathsf{r}} \mathsf{r}} \mathsf{r}} \mathsf{r}_{\mathsf{r}}^{\mathsf{r}} \mathsf{r}} \mathsf{r}_{\mathsf{r}}^{\mathsf{r}} \mathsf{r}} \mathsf{r}} \mathsf{r}} \mathsf{r}_{\mathsf{r}}^{\mathsf{r}} \mathsf{r}} \mathsf{r$

Distance

- Measurement error
- Don't know x axis scale
- This can be systematic

Animals don't move before detection

- Animals can be attracted or repelled
- Problems with distribution wrt line and/or measurement error

Attraction to the line

Credit Cork Whale Watch

Detection functions

What are detection functions?

- Model $\mathbb{P}(\text{detection } | \text{ animal at distance } x)$
- (Hence the integration)
- Many different forms, depending on the data
- All share some characteristics

Detection function assumptions

- Have a "shoulder"
 - we see things nearby easily
- Monotonic decreasing
 - never increasing with increasing distance
- "Model robust"
 - Iots of forms/flexible models
- "Pooling robust"
 - individual heterogeneity averages out
- "Efficient"
 - models don't need lots of parameters

Possible detection functions

- There are many options
- A restricted set we'll cover in this course...
 - Half-normal
 - Hazard-rate
 - adjustments to the above

Half-normal detection functions

Hazard-rate detection functions

Adjustment terms

- These models are flexible
- What about adding more flexibilty by "adjusting" them
- Options:
 - Cosine series
 - Polynomials
 - Hermite polynomials
- Add extra flexibility

Half-normal (with cosine adjustments)

Okay, but how can we actually do this?

Modelling strategy

- 1. Pick some formulations, fit models
- 2. Check assumptions are violated
- 3. Goodness of fit
- 4. Select models
- 5. Estimate \hat{N} (and uncertainty!)

Distance sampling data

- Need to have data setup a certain way
 - a data.frame with one row per observation
 - at least 2 columns, named "object" and "distance"

	distance	object	size	SeaState	
1	246.0173	1	2	3.0	
2	1632.3934	2	2	2.5	
3	2368.9941	3	1	3.0	
4	244.6977	4	1	3.5	
5	2081.3468	5	1	4.0	
6	1149.2632	6	1	2.4	
-		•	_	_ • •	

Fitting detection functions (in R!)

- Using the package Distance
- Function ds() does most of the work

```
library(Distance)
df_hn <- ds(distdata, truncation=6000, adjustment = NULL)
df_hr <- ds(distdata, truncation=6000, key="hr", adjustment =
NULL)</pre>
```

Model summary

```
summary(df_hn)
```

Summary for distance analysis Number of observations : 132 0 -Distance range 6000 Model : Half-normal key function AIC : 2252.06 Detection function parameters Scale Coefficients: estimate se (Intercept) 7.900732 0.07884776 Estimate SE CV Average p 0.5490484 0.03662569 0.06670757 N in covered region 240.4159539 21.32287580 0.08869160

Plotting models

Truncation

- We set truncation=6000, why?
- Remove observations in the tail of the distribution
- Care about g near 0!
- Trade-off! (Here we use ~96% of the data)
- Len Thomas suggests $g(w) \approx 0.15$

Recap

Distance sampling

- More efficient sampling
 - No census
- Collect additional information
 - Distances
- Estimate detection
- Use $\mathbb{P}(detection)$ to correct counts

What's next?

- Model checking and selection
- Estimating abundance in R
- Stratification
- What else affects detectability?