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What	is	a	GAM?



"gam"
1.	 Collective	noun	used	to	refer	to	a	group	of	whales,	or	rarely

also	of	porpoises;	a	pod.

2.	 (by	extension)	A	social	gathering	of	whalers	(whaling	ships).

(via	Natalie	Kelly,	CSIRO.	Seen	in	Moby	Dick.)



Generalized	Additive	Models
Generalized:	many	response	distributions

Additive:	terms	add	together

Models:	well,	it's	a	model…



What	does	a	model	look	like?
Count	 	distributed	according	to	some	count	distribution

Model	as	sum	of	terms

nj



Mathematically...
Taking	the	previous	example…

where	 ,	 	count	distribution

= exp[ + s( ) + s( )] +nj Aj p̂j β0 yj Depthj ϵj

∼ N(0, )ϵj σ2 ∼nj



Mathematically...
Taking	the	previous	example…

where	 ,	 	count	distribution

= exp[ + s( ) + s( )] +nj Aj p̂j β0 yj Depthj ϵj

∼ N(0, )ϵj σ2 ∼nj

area of segment - offset
probability of detection in segment
link function
model terms



Response

where	 ,	

= exp[ + s( ) + s( )] +nj Aj p̂j β0 yj Depthj ϵj

∼ N(0, )ϵj σ2 ∼ count distributionnj



Count	distributions
Response	is	a	count	(not
not	always	integer)

Often,	it's	mostly	zero
(that's	complicated)

Want	response
distribution	that	deals
with	that

Flexible	mean-variance
relationship



Tweedie	distribution

Common	distributions	are
sub-cases:

	Poisson

	Gamma

	Normal

We	are	interested	in	

(here	
)

Var(count) = ϕ(count)q

q = 1 ⇒
q = 2 ⇒
q = 3 ⇒

1 < q < 2

q = 1.2, 1.3, … , 1.9



Negative	binomial
	

Estimate	

Is	quadratic	relationship	a
“strong”	assumption?

Similar	to	Poisson:	

Var(count) =
(count) + κ(count)2

κ

Var(count) = (count)



Smooth	terms

where	 ,	 	count	distribution

= exp[ + s( ) + s( )] +nj Aj p̂j β0 yj Depthj ϵj

∼ N(0, )ϵj σ2 ∼nj



Okay,	but	what	about	these	"s"	things?
Think	 =smooth

Want	to	model	the
covariates	flexibly

Covariates	and	response
not	necessarily	linearly
related!

Want	some	wiggles

s



What	is	smoothing?



Straight	lines	vs.	interpolation
Want	a	line	that	is	“close”
to	all	the	data

Don't	want	interpolation
–	we	know	there	is	“error”

Balance	between
interpolation	and	“fit”



Splines
Functions	made	of	other,	simpler	functions

Basis	functions	 ,	estimate	

Makes	the	math(s)	much	easier

bk βk

s(x) = (x)∑K
k=1 βkbk



Measuring	wigglyness
Visually:

Lots	of	wiggles	==	NOT	SMOOTH

Straight	line	==	VERY	SMOOTH

How	do	we	do	this	mathematically?

Derivatives!

(Calculus	was	a	useful	class	afterall)



Wigglyness	by	derivatives



Making	wigglyness	matter
Integration	of	derivative	(squared)	gives	wigglyness

Fit	needs	to	be	penalised

Penalty	matrix	gives	the	wigglyness

Estimate	the	 	terms	but	penalise	objective

“closeness	to	data”	+	penalty

βk



Penalty	matrix
For	each	 	calculate	the	penalty

Penalty	is	a	function	of	

	calculated	once

smoothing	parameter	( )	dictates	influence

bk

β
λ SββT

S
λ



Smoothing	parameter



How	wiggly	are	things?
We	can	set	basis	complexity	or	“size”	( )

Maximum	wigglyness

Smooths	have	effective	degrees	of	freedom	(EDF)

EDF	<	

Set	 	“large	enough”

k

k
k



Okay,	that	was	a	lot	of	theory...



Fitting	GAMs	using	dsm



Translating	maths	into	R

where	 ,	 	count	distribution	

inside	the	link:	formula=count ~ s(y)
response	distribution:	family=nb()	or	family=tw()
detectability:	ddf.obj=df_hr
offset,	data:	segment.data=segs,
observation.data=obs

= exp[ + s( )] +nj Aj p̂j β0 yj ϵj

∼ N(0, )ϵj σ2 ∼nj



Your	first	DSM

(method="REML"	uses	REML	to	select	the	smoothing
parameter)

dsm	is	based	on	mgcv	by	Simon	Wood

library(dsm)
dsm_x_tw <- dsm(count~s(x), ddf.obj=df_hr,
                segment.data=segs, observation.data=obs,
                family=tw(), method="REML")



What	did	that	do?
summary(dsm_x_tw)

Family: Tweedie(p=1.326) 
Link function: log 

Formula:
count ~ s(x) + offset(off.set)

Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -19.7008     0.2277  -86.52   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
       edf Ref.df     F  p-value    
s(x) 4.962  6.047 6.403 1.07e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) =  0.0283   Deviance explained = 17.7%
-REML = 409.94  Scale est. = 6.0413    n = 949



Plotting
plot(dsm_x_tw)
Dashed	lines	indicate	+/-
2	standard	errors

Rug	plot

On	the	link	scale

EDF	on	 	axisy



Adding	a	term
Just	use	+
dsm_xy_tw <- dsm(count ~ s(x) + s(y),
                 ddf.obj=df_hr,
                 segment.data=segs, observation.data=obs,
                 family=tw(), method="REML")



Summary
summary(dsm_xy_tw)

Family: Tweedie(p=1.306) 
Link function: log 

Formula:
count ~ s(x) + s(y) + offset(off.set)

Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -19.9801     0.2381  -83.93   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
       edf Ref.df     F  p-value    
s(x) 4.943  6.057 3.224 0.004239 ** 
s(y) 5.293  6.419 4.034 0.000322 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) =  0.0678   Deviance explained = 27.3%
-REML = 399.84  Scale est. = 5.3157    n = 949



Plotting

scale=0:	each	plot	on	different	scale

pages=1:	plot	together

plot(dsm_xy_tw, scale=0, pages=1)



Bivariate	terms
Assumed	an	additive	structure

No	interaction

We	can	specify	s(x,y)	(and	s(x,y,z,...))



Thin	plate	regression	splines
Default	basis

One	basis	function	per	data	point

Reduce	#	basis	functions	(eigendecomposition)

Fitting	on	reduced	problem

Multidimensional



Thin	plate	splines	(2-D)



Bivariate	spatial	term
dsm_xyb_tw <- dsm(count ~ s(x, y),
                 ddf.obj=df_hr,
                 segment.data=segs, observation.data=obs,
                 family=tw(), method="REML")



Summary
summary(dsm_xyb_tw)

Family: Tweedie(p=1.29) 
Link function: log 

Formula:
count ~ s(x, y) + offset(off.set)

Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -20.1638     0.2477   -81.4   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
         edf Ref.df     F  p-value    
s(x,y) 16.89  21.12 4.333 3.73e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) =  0.102   Deviance explained = 34.5%
-REML = 394.86  Scale est. = 4.8248    n = 949



Plotting...	erm...



Let's	try	something	different

Still	on	link	scale

too.far	excludes	points	far	from	data

vis.gam(dsm_xyb_tw, view=c("x","y"), plot.type="contour", 
too.far=0.1, asp=1)



Comparing	bivariate	and	additive	models



Model	checking

“perhaps	the	most	important	part	of	applied	statistical
modelling”

Simon	Wood



Model	checking
As	with	detection	function,	checking	is	important

Want	to	know	the	model	conforms	to	assumptions

What	assumptions	should	we	check?



What	to	check
Convergence	(not	usually	an	issue)

Basis	size	is	big	enough

Residuals



Basis	size



Basis	size	(k)
Set	k	per	term

e.g.	s(x, k=10)	or	s(x, y, k=100)
Penalty	removes	“extra”	wigglyness

up	to	a	point!

(But	computation	is	slower	with	bigger	k)



Checking	basis	size
gam.check(dsm_x_tw)

Method: REML   Optimizer: outer newton
full convergence after 7 iterations.
Gradient range [-3.08755e-06,4.928062e-07]
(score 409.936 & scale 6.041307).
Hessian positive definite, eigenvalue range [0.7645492,302.127].
Model rank =  10 / 10 

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

        k'   edf k-index p-value
s(x) 9.000 4.962   0.763    0.44



Increasing	basis	size
dsm_x_tw_k <- dsm(count~s(x, k=20), ddf.obj=df_hr,
                  segment.data=segs, observation.data=obs,
                  family=tw(), method="REML")
gam.check(dsm_x_tw_k)

Method: REML   Optimizer: outer newton
full convergence after 7 iterations.
Gradient range [-2.301246e-08,3.930757e-09]
(score 409.9245 & scale 6.033913).
Hessian positive definite, eigenvalue range [0.7678456,302.0336].
Model rank =  20 / 20 

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

         k'    edf k-index p-value
s(x) 19.000  5.246   0.763    0.36



Sometimes	basis	size	isn't	the	issue...
Generally,	double	k	and	see	what	happens

Didn't	increase	the	EDF	much	here

Other	things	can	cause	low	“p-value”	and	“k-index”

Increasing	k	can	cause	problems	(nullspace)



Don't	throw	away	your
residuals!



What	are	residuals?
Generally	residuals	=	observed	value	-	fitted	value

BUT	hard	to	see	patterns	in	these	“raw”	residuals

Need	to	standardise	–	deviance	residuals

Residual	sum	of	squares	 	linear	model

deviance	 	GAM

Expect	these	residuals	

⇒
⇒

∼ N(0, 1)



Residual	checking



Shortcomings
gam.check	left	side	can	be	helpful

Right	side	is	victim	of	artifacts

Need	an	alternative

“Randomised	quanitle	residuals”	(experimental)

rqgam.check
Exactly	normal	residuals	(left	side	useless)



Randomised	quantile	residuals



Residuals	vs.	covariates



Residuals	vs.	covariates	(boxplots)



Example	of	"bad"	plots



Example	of	"bad"	plots



Residual	checks
Looking	for	patterns	(not	artifacts)

This	can	be	tricky

Need	to	use	a	mixture	of	techniques



Let's	have	a	go...


