Multivariate smoothing, model selection

David L Miller

Recap

  • How GAMs work
  • How to include detection info
  • Simple spatial-only models
  • How to check those models

Univariate models are fun, but...

Ecology is not univariate

  • Many variables affect distribution
  • Want to model the right ones
  • Select between possible models
    • Smooth term selection
    • Response distribution
  • Large literature on model selection

Tobler's first law of geography

“Everything is related to everything else, but near things are more related than distant things”

Tobler (1970)

Implications of Tobler's law

plot of chunk pairrrrs

Covariates are not only correlated (linearly)…



…they are also “concurve”

What can we do about this?

  • Careful inclusion of smooths
  • Fit models using robust criteria (REML)
  • Test for concurvity
  • Test for sensitivity

Models with multiple smooths

Adding smooths

  • Already know that + is our friend
  • Add everything then remove smooth terms?
dsm_all_tw <- dsm(count~s(x, y, bs="ts") +
                        s(Depth, bs="ts") +
                        s(DistToCAS, bs="ts") +
                        s(SST, bs="ts") +
                        s(EKE, bs="ts") +
                        s(NPP, bs="ts"),
                      ddf.obj=df_hr,
                      segment.data=segs, observation.data=obs,
                      family=tw(), method="REML")

Now we have a huge model, what do we do?

Smooth term selection

  • Classically two main approaches:
    • Stepwise - path dependence
    • All possible subsets - computationally expensive

Removing terms by shrinkage

  • Remove smooths using a penalty (shrink the EDF)
  • Basis "ts" - thin plate splines with shrinkage
  • “Automatic”

p-values

  • \( p \)-values can be used
  • They are approximate
  • Reported in summary
  • Generally useful though

Let's employ a mixture of these techniques

How do we select smooth terms?

  1. Look at EDF
    • Terms with EDF<1 may not be useful
    • These can usually be removed
  2. Remove non-significant terms by \( p \)-value
    • Decide on a significance level and use that as a rule

Example of selection

Selecting smooth terms


Family: Tweedie(p=1.277) 
Link function: log 

Formula:
count ~ s(x, y, bs = "ts") + s(Depth, bs = "ts") + s(DistToCAS, 
    bs = "ts") + s(SST, bs = "ts") + s(EKE, bs = "ts") + s(NPP, 
    bs = "ts") + offset(off.set)

Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -20.260      0.234  -86.59   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
                   edf Ref.df     F  p-value    
s(x,y)       1.888e+00     29 0.705 3.56e-06 ***
s(Depth)     3.679e+00      9 4.811 2.15e-10 ***
s(DistToCAS) 3.936e-05      9 0.000   0.6798    
s(SST)       3.831e-01      9 0.063   0.2160    
s(EKE)       8.196e-01      9 0.499   0.0178 *  
s(NPP)       1.587e-04      9 0.000   0.8361    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) =   0.11   Deviance explained =   35%
-REML = 385.04  Scale est. = 4.5486    n = 949

Shrinkage in action

plot of chunk smooth-shrinkage

Same model with no shrinkage

plot of chunk smooth-no-shrinkage

Let's remove some smooth terms & refit

dsm_all_tw_rm <- dsm(count~s(x, y, bs="ts") +
                        s(Depth, bs="ts") +
                        #s(DistToCAS, bs="ts") +
                        #s(SST, bs="ts") +
                        s(EKE, bs="ts"),#+
                        #s(NPP, bs="ts"),
                      ddf.obj=df_hr,
                      segment.data=segs, observation.data=obs,
                      family=tw(), method="REML")

What does that look like?


Family: Tweedie(p=1.279) 
Link function: log 

Formula:
count ~ s(x, y, bs = "ts") + s(Depth, bs = "ts") + s(EKE, bs = "ts") + 
    offset(off.set)

Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -20.258      0.234  -86.56   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
            edf Ref.df     F  p-value    
s(x,y)   1.8969     29 0.707 1.76e-05 ***
s(Depth) 3.6949      9 5.024 1.08e-10 ***
s(EKE)   0.8106      9 0.470   0.0216 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) =  0.105   Deviance explained = 34.8%
-REML = 385.09  Scale est. = 4.5733    n = 949

Removing EKE...


Family: Tweedie(p=1.268) 
Link function: log 

Formula:
count ~ s(x, y, bs = "ts") + s(Depth, bs = "ts") + offset(off.set)

Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -20.3088     0.2425  -83.75   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
           edf Ref.df     F  p-value    
s(x,y)   6.443     29 1.322 4.75e-08 ***
s(Depth) 3.611      9 4.261 1.49e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) =  0.141   Deviance explained = 37.8%
-REML = 389.86  Scale est. = 4.3516    n = 949

General strategy

For each response distribution and non-nested model structure:

  1. Build a model with the smooths you want
  2. Make sure that smooths are flexible enough (k=...)
  3. Remove smooths that have been shrunk
  4. Remove non-significant smooths

Comparing models

Nested vs. non-nested models

  • Compare ~s(x)+s(depth) with ~s(x)
    • nested models
  • What about s(x) + s(y) vs. s(x, y)
    • don't want to have all these in the model
    • not nested models

Measures of "fit"

  • Two listed in summary
    • Deviance explained
    • Adjusted \( R^2 \)
  • Deviance is a generalisation of \( R^2 \)
  • Highest likelihood value (saturated model) minus estimated model value
  • (These are usually not very high for DSMs)

A quick note about REML scores

  • Use REML to select the smoothness
  • Can also use the score to do model selection
  • BUT only compare models with the same fixed effects
    • (i.e. same “linear terms” in the model)
  • \( \Rightarrow \) All terms must be penalised (e.g. bs="ts")
  • Alternatively set select=TRUE in gam()

Selecting between response distributions

Goodness of fit tests

  • Q-Q plots
  • Closer to the line == better plot of chunk gof-qq

Going back to concurvity

“How much can one smooth be approximated by one or more other smooths?”

Concurvity (model/smooth)

concurvity(dsm_all_tw)
                 para    s(x,y)  s(Depth) s(DistToCAS)    s(SST)    s(EKE)
worst    2.539199e-23 0.9963493 0.9836597    0.9959057 0.9772853 0.7702479
observed 2.539199e-23 0.8571723 0.8125938    0.9882995 0.9525749 0.6745731
estimate 2.539199e-23 0.7580838 0.9272203    0.9642030 0.8978412 0.4906765
            s(NPP)
worst    0.9727752
observed 0.9483462
estimate 0.8694619

Concurvity between smooths

concurvity(dsm_all_tw, full=FALSE)$estimate
                     para       s(x,y)     s(Depth) s(DistToCAS)
para         1.000000e+00 4.700364e-26 4.640330e-28 6.317431e-27
s(x,y)       8.687343e-24 1.000000e+00 9.067347e-01 9.568609e-01
s(Depth)     1.960563e-25 2.247389e-01 1.000000e+00 2.699392e-01
s(DistToCAS) 2.964353e-24 4.335154e-01 2.568123e-01 1.000000e+00
s(SST)       3.614289e-25 5.102860e-01 3.707617e-01 5.107111e-01
s(EKE)       1.283557e-24 1.220299e-01 1.527425e-01 1.205373e-01
s(NPP)       2.034284e-25 4.407590e-01 2.067464e-01 2.701934e-01
                   s(SST)       s(EKE)       s(NPP)
para         5.042066e-28 3.615073e-27 6.078290e-28
s(x,y)       7.205518e-01 3.201531e-01 6.821674e-01
s(Depth)     1.232244e-01 6.422005e-02 1.990567e-01
s(DistToCAS) 2.554027e-01 1.319306e-01 2.590227e-01
s(SST)       1.000000e+00 1.735256e-01 7.616800e-01
s(EKE)       2.410615e-01 1.000000e+00 2.787592e-01
s(NPP)       7.833972e-01 1.033109e-01 1.000000e+00

Visualising concurvity between terms

plot of chunk concurvity-all-vis

  • Previous matrix output visualised
  • Diagonal/lower triangle left out for clarity
  • High values (yellow) = BAD

Path dependence

Sensitivity

  • General path dependency?
  • What if there are highly concurve smooths?
  • Is the model is sensitive to them?

What can we do?

  • Fit variations excluding smooths
    • Concurve terms that are excluded early on
  • Appendix of Winiarski et al (2014) has an example

Sensitivity example

  • s(Depth) and s(x, y) are highly concurve (0.9067)
  • Refit removing Depth first
# with depth
              edf Ref.df        F      p-value
s(x,y)   6.442980     29 1.321650 4.754400e-08
s(Depth) 3.611038      9 4.261229 1.485902e-10
# without depth
              edf Ref.df         F      p-value
s(x,y) 13.7777929     29 2.5891485 1.161562e-12
s(EKE)  0.8448441      9 0.5669749 1.050441e-02
s(NPP)  0.7994168      9 0.3628134 3.231807e-02

Comparison of spatial effects

plot of chunk sensitivity-vis

Sensitivity example

  • Refit removing x and y
# without xy
              edf Ref.df        F      p-value
s(SST)   4.583260      9 3.244322 3.118815e-06
s(Depth) 3.973359      9 6.799043 4.125701e-14
# with xy
              edf Ref.df        F      p-value
s(x,y)   6.442980     29 1.321650 4.754400e-08
s(Depth) 3.611038      9 4.261229 1.485902e-10

Comparison of depth smooths

plot of chunk sensitivity-depth

Comparing those three models...

Name Rsq Deviance
s(x,y) + s(Depth) 0.1411 37.82
s(x,y)+s(EKE)+s(NPP) 0.1159 34.40
s(SST)+s(Depth) 0.1213 35.76
  • “Full” model still explains most deviance
  • No depth model requires spatial smooth to “mop up” extra variation
  • We'll come back to this when we do prediction

Recap

Recap

  • Adding smooths
  • Removing smooths
    • \( p \)-values
    • shrinkage
  • Comparing models
  • Comparing response distributions
  • Sensitivity