In this session, we will

- Go over computer lab logistics and software
- Introduce our practical modeling exercise and the line transect survey data we will use for it
- Discuss strategies for using ArcGIS and R together
- Move our survey sightings from CSV \rightarrow ArcGIS \rightarrow R

Software

Our needs

- Explore and manipulate tabular and geospatial data
- Download, visualize, project, and sample gridded environmental data
- Make maps
- Perform general statistical exploration and analysis
- Fit and utilize detection functions
- Fit and utilize generalized additive models (GAMs)

ArcGIS

- First and foremost, a graphical user interface (ArcMap)
- + Excellent for making maps
- + Excellent for manipulating spatial data
 - Without programming, via Model Builder diagrams
 - With programming, via Python and other languages
- Poor for statistical analysis or plots, except for specific scenarios, unless you program it yourself
- Has difficulty with scientific data formats (HDF, netCDF, OPeNDAP) and is not very "time-aware"
 - Both of these have been improving with recent releases
- ArcGIS Desktop runs only on Microsoft Windows (currently)
- Closed source, costs a lot of money

Marine Geospatial Ecology Tools (MGET)

- Collection of 300 geoprocessing tools that plugs into ArcGIS
- Can also be invoked from Python
- Requires Windows + ArcGIS
- Free, open source
- Many tools not marine-specific

 In this workshop, we will mainly use tools related to acquiring and manipulating environmental data for use in our density modeling exercise

http://mgel.env.duke.edu/mget (or Google "MGET")

- First and foremost, a programming language
- + Cross platform, open source, free (as in freedom)
- + Excellent for statistical analysis and plots
- + Excellent for manipulating tabular data
 - Once you get the data loaded into R
- ± Excellent for manipulating raster data, less so for vector
- -High learning curve, even for seasoned programmers
- -Very tedious for making maps, relative to GIS software
 - But can produce excellent results, with programming

Distance R packages

- R packages for distance sampling include:
 - *mrds* fits detection functions to point and line transect distance sampling survey data, for both single and double observer surveys.
 - **Distance** a simpler interface to *mrds* for single observer distance sampling surveys.
 - *dsm* fits density surface models to spatially-referenced distance sampling data. Count data are corrected using detection functions fitted using *mrds* or *Distance*. Spatial models are constructed using generalized additive models.
- We will spend much of our time with these

http://distancesampling.org

Other R packages

- *mgcv* for fitting generalized additive models (GAMs).
 We will spend a lot of time with this package, although functions from *Distance* and *dsm* will wrap it for us.
- rgdal, raster for reading and writing geospatial data
- *ggplot2, viridis* for nice plots
- plyr, reshape2 for manipulating tabular data, especially R data.frames

RStudio Desktop

R Studio

- Powerful integrated development environment for R
- Free, open source

Image: <u>http://www.rstudio.com</u> and <u>http://clasticdetritus.com</u>

"The people I distrust most are those who want to improve our lives but have only one course of action."

Frank Herbert

Computer lab software setup

1. In your browser, open

http://distancesampling.org/workshops/duke-spatial-2015/

- 2. Go to **Course Materials** and click on **Slides**
- 3. Open the **Software Setup** PDF and follow the instructions

Practical modeling exercise

Observers on the R/V Gordon Gunter

Observers on the R/V Gordon Gunter

Left

observer

observer

Right

Data recorder

Photo: Kimberly Gogan

10	11
MARINE MAMMAL SIGHTING FORM * DO NOT FILL IN BOXES PRECEDED BY AN ASTERISK	To eid in your identification of
1. OBSERVER NAME LEW CONSIGLIERI RECORDID . 186070 VESSEL NAME MILLER FREEMAN X8 NO. DIX 123456	characteristics corresponding to the features you observed.
2. DATE (Yr./Mo./Day) & TIME (local) OF SIGHTING 7 8 9 10 11 12 13 14 15 16	Body length (estimation): < 10 feet 10–25 feet (25–50 feet 50–80 feet Dorsal fin? Yes (No)
3. LATITUDE (degrees/minutes/10ths) - N/S	Shape of dorsal fin:
4. LONGITUDE (degrees/minutes/10ths)-E/W	0 2 feet 0 5 feet Porpoises/dolphins
5. SPECIES Specim Whale Physeter Macroephon Pm TENATIVE .	
6. NUMBER SIGHTED 3 ± * C.I. 0 0003	
7. INITIAL SIGHTING CUE Blows through binor whars * 01	
8. ANGLE FROM BOW 030 9. INITIAL SIGHTING DISTANCE	
10's of meters 100	Prominent blow? Yes No
10. VISIBILITY 16 NM 11. SEA STATE (Beaufort) 12* VIS CODE 2	Length of dive: <2 minutes 5-7 minutes (10-20 minutes)
13. WEATHER Ptly Cloudy 14. SURFACE WATER TEMP. (°CI ± + OS	Shape of blow:
15. PLATFORM CODE * 1006 57 58 59 60 16. TIME ZONE ± + 10 61 62 63	
 How did you identify animal(s)? Sketch and describe animal; associated organisms; behavior (include closest approach); comments. 	
Animals come within 1/2 Km of Vessel. Clearly able	Showed flukes upon dive? (Yes) No Other behavior characteristics: (No specific behavior) Bow riding
Two animals were around	Following vessel Slow rolling Breaching Porpoising
36 long; the state high	Distinctive markings (scarring, white patches, etc.) :
Figure 1Marine mammal sighting form (front).	Figure 2Marine mammal sighting form (back).
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80	

Boucher CG, Boaz CJ (1989) Documentation for the Marine Mammal Sightings Database of the National Marine Mammal Laboratory. NOAA Technical Memorandum NMFS F/NWC-159. 60 p.

Perpendicular distances to sightings using binocular reticles

Our species of interest: Sperm whale *Physeter macrocephalus*

Photo: Franco Banfi

NOAA's abundance estimates (Waring et al. 2007):

Table 1. Summary of abundance estimates for the western North Atlantic sperm whale. Month, year, and area covered during each abundance survey, and resulting abundance estimate (N _{best}) and coefficient of variation (CV).						
Month/Year Area N _{best} CV						
Jun-Aug 2004	Maryland to the Bay of Fundy	2,607	0.57			
Jun-Aug 2004	Florida to Maryland	2,197	0.47			
Jun-Aug 2004	Bay of Fundy to Florida (COMBINED)	4,804	0.38			

Waring GT, Josephson E, Fairfield-Walsh CP, Maze-Foley K (2007) U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2007. NOAA Tech Memo NMFS NE 205. 415 p.

Our goals:

. .

- Produce our own abundance estimates from NOAA's data
- Go beyond this: produce a density surface (animals km⁻²)

This methodology is generic!

- We're teaching a marine example because one of us works mainly on marine species
- The methodology and most of the tools are generic
- If you are a terrestrial ecologist, please feel free to speak up, raise terrestrial questions and examples, and represent land-dwellers with pride!

Photos and figure: David L Miller and colleagues

Let's explore the data...

Using ArcGIS and R together

Two main approaches

- **Exchange data** run both programs interactively and manually move data back and forth between them
 - We will do this in our workshop
- *Automation* execute one program from within the other, or both from a third program, to coordinate their execution from an automated workflow
 - We will not do this, but I can discuss it at the end of the session, if there is time and interest

Exchanging data by writing files

ArcGIS writes, R reads

R writes, ArcGIS reads

Formats for exchanging data

For tabular data—tables and feature classes in ArcGIS—there are several common alternatives:

- Comma-separated values (CSV) files
- DBF files and shapefiles
- Personal and file geodatabases

For rasters, you can leave them in the formats you already use in ArcGIS (GeoTIFF, IMG, etc.)

Comma-separated values (CSV) files

📔 *D:\	Workshops\2015_10_DSM\Slides\DataExchangeExamples\Points.csv - Notepad++	x
<u>F</u> ile <u>E</u>	<u>E</u> dit <u>S</u> earch <u>V</u> iew Encoding <u>L</u> anguage Se <u>t</u> tings Macro Run Plugins <u>W</u> indow <u>?</u>	Х
	🚽 🔚 🕼 💫 🕼 🕞 🖕 🖌 🛍 🌔 Ə 🕊 🏙 🍢 🍕 👒 🍱 🖼 🎫 🤋 🏾 🏣 🏹 💷 💌 🗈 🕨 🖳 🥁 🌱	
Poi	nts.csv	
1	XCoord, YCoord, OBJECTID, SOMEDATETIME, SOMEINT, SOMEFLOAT	-
2	214544.04920000,689074.29460000,1,2004-06-24 07:27:04.166531,1,10288.905273	
3	222654.26370000,682780.99250000,2,2004-06-24 09:03:18.641159,3,10288.905273	
4	230279.86430000,675473.33230000,3,2004-06-24 09:03:18.641159,3,10288.905273	
5	239328.91790000,666646.30570000,4,2004-06-24 09:51:27.121335,4,10288.905273	
6	246686.54250000,659459.16270000,5,2004-06-24 10:25:39.060701,5,10288.905273	
7	254306.96100000,652547.24960000,6,2004-06-24 11:00:22.425303,6,10288.905273	
8	258088.51610000,648735.19790000,7,2004-06-24 12:11:30.890615,7,10288.905273	
9	255660.45380000,652567.78050000,8,2004-06-24 13:30:41.023928,8,10288.905273	
10	262240.65170000,646114.50670000,9,2004-06-24 14:14:19.055592,9,10288.905273	
11	269673.73540000,639001.45260000,10,2004-06-24·14:51:21.964176,10,10288.905273	
12	276839.28940000,634501.11210000,11,2004-06-24 15:28:31.163228,11,10288.905273	
13	280756.74210000,642407.56960000,12,2004-06-24 16:03:25.595323,12,10288.905273	
14	284283.31080000,652072.65900000,13,2004-06-24·16:37:16.346278,13,10288.905273	
15	287752.92650000,661758.83370000,14,2004-06-24 17:12:16.648150,14,10288.905273	
16	298387.87900000,682462.63450000,15,2004-06-25 06:28:26.577917,15,9861.579102	
17	306293.19900000,677058.04320000,16,2004-06-25 07:04:30.079041,16,9861.579102	
18	314363.06330000,671394.22290000,17,2004-06-25 07:37:46.773628,17,9861.579102	
19	322326.53170000,665583.28890000,18,2004-06-25 08:11:13.562277,18,9861.579102	-
Normal	text file length : 76690 lines : 951 Ln : 1 Col : 1 Sel : 0 Dos\Windows ANSI I	NS at

CSV files for tables

-Just text; no way to specify data types of columns

- Due to that and other limitations of ArcGIS, CSV is not an appropriate default format when using ArcGIS
- Export from ArcGIS messes up certain columns

Send a table from ArcGIS to R with a CSV:

> somedata <- read.csv("C:/Temp/SomeData.csv", stringsAsFactors=FALSE)</pre>

For date columns, use colclasses parameter to specify data type

CSV files for tables

Send a table from R to ArcGIS with a CSV:

> write.csv(somedata, "C:/Temp/SomeData.csv", row.names=FALSE, na="")

CSVs may be used directly in ArcGIS for certain tasks. But often it is necessary to convert them to more structured format, such as a geodatabase table or DBF file:

CSV files for feature classes

- -Same limitations as with tables
- Cannot easily handle geometries other than points

Send points from ArcGIS to R with a CSV:

> points <- read.csv("C:/Temp/Points.csv", stringsAsFactors=FALSE)
For date columns, use colclasses parameter to specify data type</pre>

CSV files for feature classes

Send points from R to ArcGIS with a CSV:

> write.csv(points, "D:/Temp/Points2.csv", row.names=FALSE, na="") Make sure points has columns for x and y coordinates

to save the layer

DBF files for tables

+ Suitable as default format in ArcGIS, but:

 Significant limitations: 10 char column names; date fields do not have times; little support for NULL values

Read a DBF file into R:

- Temp
 Points.shp
 SomeData.dbf
- > library(foreign)
- > somedata <- read.dbf("C:/Temp/SomeData.dbf", as.is=TRUE)</pre>

Write a DBF file from R:

> write.dbf(somedata, "C:/Temp/SomeData2.dbf", factor2char=TRUE)

Shapefiles for vector data

+ Suitable as default format in ArcGIS

 Same limitations as DBF: 10 char column names; date fields do not have times; little support for NULL values

Read a shapefile into R:

🗉 🚞 Temp	For DATE columns, readOGR creates a
🔛 Points.shp	character column in the returned data.frame.
SomeData.dbf	We must parse it, e.g. using as.POSIXct().

- > library(rgdal)
- > points <- readOGR("D:/Temp", "Points", stringsAsFactors=FALSE)</pre>
- > points\$SomeDateTime <- as.POSIXct(points\$SomeDateTime)</pre>

Write a shapefile from R:

> writeOGR(points, "D:/Temp", "Points", driver="ESRI Shapefile")
For POSIXct (etc.) columns, writeOGR creates a TEXT column in the shapefile.

Personal and file geodatabases

- + Multiple tables and feature classes in single file or dir.
- + Avoids archaic limitations of CSV, DBF, and shapefile
- Different R packages needed depending on scenario

Personal geodatabase (.mdb file)

- ± MS Access format; can open in many tools; can be hard on Linux
- Total file size limited to 2 GB
- ESRI is depreciating this format

File geodatabase (.gdb directory)

- + No size limitation
- Proprietary ESRI format; limited interoperability

With the RODBC package:

Read a table from a personal GDB (or other Access DB):

🖃 间 Data.mdb	OBJECTID *	SomeDateTime	SomeInt	SomeFloat
😳 Points	1	6/24/2004 7:27:04	1	10288.91
SomeData	2	6/24/2004 8:08:05	2	10288.91

- > library(RODBC) # May not be available on all Linux distros
- > conn <- odbcConnectAccess("D:/Temp/Data.mdb") # odbcConnect on Linux</pre>
- > data <- sqlQuery(conn, "SELECT * FROM SomeData", stringsAsFactors=FALSE)</pre>
- > close(conn)

Neither works with file GDBs!

Write a table to a personal GDB (or other Access DB):

- > library(RODBC)
- > conn <- odbcConnectAccess("D:/Temp/Data.mdb")</pre>
- Data.mdb
 MyNewTable
 Points
 SomeData

> close(conn)

Necessary for ArcGIS to add or recognize the table's OBJECTID

With the rgdal package:

Read a feature class from a personal or file GDB:

Data.gdb
 Points
 SomeData
 As with shap
 creates a ch
 data.frame.

As with shapefiles, for DATE columns, readOGR creates a character column in the returned data.frame. Must parse, e.g. using as.POSIXct().

- > library(rgdal)
- > points <- readOGR("D:/Temp/Data.gdb", "Points", stringsAsFactors=FALSE)</pre>
- > points\$SomeDateTime <- as.POSIXct(points\$SomeDateTime)</pre>
- You cannot write to geodatabases with rgdal at this time
- In the future, it may be possible to write to file geodatabases if some technical and licensing issues are worked out on CRAN (but this looks pretty unlikely)

ESRI's new initiative

https://r-arcgis.github.io/

R-bridge for ArcGIS

- Enables R to read and write any tables or feature classes that are accessible through ArcGIS
- Brand new: July 2015
- Requires ArcGIS 10.3.1+, R 3.1.0+, MS Windows
- Requires administrator rights to install
 - Instructions: <u>https://github.com/R-ArcGIS/r-bridge-install</u>
- Installs the arcgisbinding R library
 - Cannot be installed from CRAN (at least right now)
 - Only works if ArcGIS is installed; checks your license
 - Core implemented with C++, COM, ATL, ArcObjects
 - Open source (!) Apache License 2.0

Initialize the ArcGIS license:

```
> library(arcgisbinding)
*** Please call arc.check_product() to define a desktop license.
>
> arc.check_product()
product: ArcGIS Desktop
license: Advanced
build number: 10.3.1.4959
binding dll: rarcproxy
>
```

Read a table into R:

> dataset <- arc.open("D:/Temp/Data.mdb/SomeData") # Open the dataset</pre>

- > arcdf <- arc.select(dataset) # Get an arc.data instance of data.frame</pre>
- > summary(arcdf)

OBJECTID	SomeDateTime	SomeInt	SomeFloat	SomeString	
Min. : 1	Min. 38162	Min. :-2.147e+09	> міп. : 839.	5 Length:949	
1st Qu.:238	1st Qu :38171	1st Qu.: 2.380e+02	1st Qu.: 9862	2 Class :character	
Median :475	Median :38180	Median : 4.750e+02	Median :1001	1 Mode :character	
Mean :475	Mean :38184	Mean :-2.262e+06	Mean :1000	9	
3rd Qu.:712	3rd Qu.:38194	3rd Qu.: 7.120e+02	3rd Qu.:1015	5	
Max. :949	Max38211	Max. : 9.490e+02	Max. :1127	4 Strings not automatically	
	NA'S :1		NA's :1	converted to factors	
				(good, in my opinion)	
	NULL integers converted to -214/483647				

Datetime values converted to floating point (number of days since 1899-12-30?)

Read a feature class into R:

Max. : 9.490e+02

Max.

NA's

:11274

:1

:38211

:1

:949

Max.

NA's

Max.

🗆 🧻 Data mdb	OBJECTID *	Shape *	SomeDateTime	SomeInt	SomeFloat		
	1	Point	6/24/2004 7:27:04	1	10288.91		
Points →	2	Point	<null></null>	<null></null>	<null></null>		
	3	Point	6/24/2004 9:03:19	3	10288.91		
💷 SomeData	4	Point	6/24/2004 9:51:27	4	10288.91		
<pre>> dataset <- arc.open("D:/Temp/Data.mdb/Points") # Open the dataset > arcdf <- arc.select(dataset) # Get an arc.data instance of data.frame > points <- arc.data2sp(arcdf) # Convert to SpatialPointsDataFrame object > library(sp) # Necessary to access sp functions > summary(points) object of class SpatialPointsDataFrame coordinates:</pre>							
Min. : 1 Min. :38162 Min. :-2.	147e+09 Min. :	: 8395 Len	gth:949				
Ist Qu.:238 Ist Qu.:381/1 Ist Qu.: 2.	380e+02 1st Qu.:	9862 Cla	ss :character				
Median :475 Median :38184 Mean : -2	750e+02 Meulan : 262e+06 Mean :	10011 MOO	e :character				
3rd Qu.:712 3rd Qu.:38194 3rd Ou.: 7.	120e+02 3rd Ou.:	10155					

Write a table or feature class from R:

> summary(df)

OBJECTID	SomeDateTime	SomeInt	SomeFloat	SomeString
Min. : 1	Min. :2004-06-24 07:27:04	Min. : 1.0	Min. : 8395	Length:949
1st Qu.:238	1st Qu.:2004-07-03 11:28:26	1st Qu.:238.8	1st Qu.: 9862	Class :character
Median :475	Median :2004-07-11 13:18:43	Median :475.5	Median :10011	Mode :character
Mean :475	Mean :2004-07-15 14:40:21	Mean :475.5	Mean :10009	
3rd Qu.:712	3rd Qu.:2004-07-26 11:06:12	3rd Qu.:712.2	3rd Qu.:10155	
Max. :949	Max. :2004-08-11 18:58:50	Max. :949.0	Max. :11274	
	NA's :1	NA's :1	NA's :1	

> arc.write("D:/Temp/Data.mdb/SomeData2", df)

OBJECTID *	OBJECTID_1	SomeDateTime	SomeInt	SomeFloat	Some String
1	1	1088062024.166531	1	10288.905273	aaa
2	2	<null></null>	<null></null>	<null></null>	<null></null>
3	3	1088067798.641159	3	10288.905273	bbb
4	4	1088070687.121335	4	10288.905273	ccc

Assigned new OBJECTID, renamed our column

 $\ \$

Converted POSIXct values to floating point (number of seconds since 1970-01-01?)

Recommended approach

• Otherwise use arcgisbinding

Alternative approach: If you can tolerate the limitations of shapefile and DBF

In this workshop

We only need to send vector data from ArcGIS to R. We will use a file GDB to facilitate cross-platform use and read from it with rgdal.

Write

In our exercise, we do not need to send tables or vector data from R back to ArcGIS.

Rasters

Reading a raster into R:

```
> library(raster)
> r <- raster("D:/Temp/Depth.img")
> r
class : RasterLayer
dimensions : 1260, 1200, 1512000 (nrow, ncol, ncell)
resolution : 0.016666667, 0.01666667 (x, y)
extent : -82, -62, 24, 45 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
data source : D:\Temp\Depth.img
names : Depth
values : 0, 6282 (min, max)
```

Writing a raster from R:

> writeRaster(r, "D:/Temp/Depth2.img") # Options for data type, compression, etc.

For raster data, I recommend .IMG format

- Supports all pixel types, raster attribute tables, statistics, compression, and very large dimensions
- GeoTIFF is an acceptable alternative, but less flexible, in my experience

Let's read our sightings into R...