
In this session, we will

• Go over computer lab logistics and software

• Introduce our practical modeling exercise and the
line transect survey data we will use for it

• Discuss strategies for using ArcGIS and R together

• Move our survey sightings from CSV  ArcGIS  R

Software

Our needs

• Explore and manipulate tabular and geospatial data

• Download, visualize, project, and sample gridded
environmental data

• Make maps

• Perform general statistical exploration and analysis

• Fit and utilize detection functions

• Fit and utilize generalized additive models (GAMs)

ArcGIS

• First and foremost, a graphical user interface (ArcMap)

+ Excellent for making maps

+ Excellent for manipulating spatial data
• Without programming, via Model Builder diagrams
• With programming, via Python and other languages

‒ Poor for statistical analysis or plots, except for specific
scenarios, unless you program it yourself

‒ Has difficulty with scientific data formats (HDF, netCDF,
OPeNDAP) and is not very “time-aware”
• Both of these have been improving with recent releases

‒ ArcGIS Desktop runs only on Microsoft Windows (currently)

‒ Closed source, costs a lot of money

Marine Geospatial Ecology
Tools (MGET)
• Collection of 300 geoprocessing

tools that plugs into ArcGIS

• Can also be invoked from Python

• Requires Windows + ArcGIS

• Free, open source

• Many tools not marine-specific

• In this workshop, we will mainly use tools related to
acquiring and manipulating environmental data for
use in our density modeling exercise

http://mgel.env.duke.edu/mget (or Google “MGET”)

R

• First and foremost, a programming language

+ Cross platform, open source, free (as in freedom)

+ Excellent for statistical analysis and plots

+ Excellent for manipulating tabular data
• Once you get the data loaded into R

± Excellent for manipulating raster data, less so for vector

‒ High learning curve, even for seasoned programmers

‒ Very tedious for making maps, relative to GIS software
• But can produce excellent results, with programming

Distance R packages

• R packages for distance sampling include:
• mrds - fits detection functions to point and line transect

distance sampling survey data, for both single and double
observer surveys.

• Distance - a simpler interface to mrds for single observer
distance sampling surveys.

• dsm - fits density surface models to spatially-referenced
distance sampling data. Count data are corrected using
detection functions fitted using mrds or Distance. Spatial
models are constructed using generalized additive models.

• We will spend much of our time with these

http://distancesampling.org

Other R packages

• mgcv – for fitting generalized additive models (GAMs).
We will spend a lot of time with this package, although
functions from Distance and dsm will wrap it for us.

• rgdal, raster – for reading and writing geospatial data

• ggplot2, viridis – for nice plots

• plyr, reshape2 – for manipulating tabular data,
especially R data.frames

RStudio Desktop

• Powerful
integrated
development
environment
for R

• Free, open
source

Image: http://www.rstudio.com
and http://clasticdetritus.com

http://www.rstudio.com/
http://clasticdetritus.com/

“The people I distrust most are those who
want to improve our lives but have only one
course of action.”

— Frank Herbert

Computer lab software setup

1. In your browser, open

http://distancesampling.org/workshops/duke-spatial-2015/

2. Go to Course Materials and click on Slides

3. Open the Software Setup PDF and follow the instructions

http://distancesampling.org/workshops/duke-spatial-2015/

Practical modeling
exercise

We are
here

NOAA 2004
U.S. east coast
shipboard marine
mammal surveys

North:
NOAA NEFSC

R/V Endeavor (URI)

We are
here

NOAA 2004
U.S. east coast
shipboard marine
mammal surveys

North:
NOAA NEFSC

R/V Endeavor (URI)

South:
NOAA SEFSC
R/V Gordon Gunter

We are
here

Observer
team

Observers on the R/V Gordon Gunter

Left
observer

Right
observer

Data
recorder

Photo:
Kimberly Gogan

Observers on the R/V Gordon Gunter

25 x 150
“bigeye”
binoculars

Boucher CG, Boaz CJ (1989) Documentation for the Marine Mammal Sightings Database of the
National Marine Mammal Laboratory. NOAA Technical Memorandum NMFS F/NWC-159. 60 p.

Perpendicular distances to sightings using binocular reticles

0°

R

Θ

P

P = R sin Θ

Photo: Whit Welles

Photo: Franco Banfi

Our species of interest:
Sperm whale
Physeter macrocephalus

NOAA 2004
U.S. east coast
shipboard marine
mammal surveys

North:
NOAA NEFSC

R/V Endeavor (URI)

South:
NOAA SEFSC
R/V Gordon Gunter

NOAA 2004
U.S. east coast
shipboard marine
mammal surveys

North:
NOAA NEFSC

R/V Endeavor (URI)

South:
NOAA SEFSC
R/V Gordon Gunter

NOAA’s abundance estimates (Waring et al. 2007):

Our goals:

• Produce our own abundance estimates from NOAA’s data

• Go beyond this: produce a density surface (animals km-2)

Waring GT, Josephson E, Fairfield-Walsh CP, Maze-Foley K (2007) U.S. Atlantic and Gulf of Mexico
Marine Mammal Stock Assessments -- 2007. NOAA Tech Memo NMFS NE 205. 415 p.

This methodology is generic!

• We’re teaching a marine example because one of us
works mainly on marine species

• The methodology and most of the tools are generic

• If you are a terrestrial ecologist, please feel free to
speak up, raise terrestrial questions and examples,
and represent land-dwellers with pride!

Photos and figure: David L Miller and colleagues

Let’s explore the data…

Using ArcGIS and R
together

Two main approaches

• Exchange data - run both programs interactively and
manually move data back and forth between them
• We will do this in our workshop

• Automation - execute one program from within the
other, or both from a third program, to coordinate
their execution from an automated workflow
• We will not do this, but I can discuss it at the end of the

session, if there is time and interest

Exchanging data by writing files

ArcGIS writes, R reads

Data

Data

R writes, ArcGIS reads

Formats for exchanging data

For tabular data—tables and feature classes in
ArcGIS—there are several common alternatives:

• Comma-separated values (CSV) files

• DBF files and shapefiles

• Personal and file geodatabases

For rasters, you can leave them in the formats
you already use in ArcGIS (GeoTIFF, IMG, etc.)

Comma-separated values (CSV) files

CSV files for tables
‒ Just text; no way to specify data types of columns

‒ Due to that and other limitations of ArcGIS, CSV is not
an appropriate default format when using ArcGIS

‒ Export from ArcGIS messes up certain columns

Send a table from ArcGIS to R with a CSV:

> somedata <- read.csv("C:/Temp/SomeData.csv", stringsAsFactors=FALSE)

For date columns, use colClasses parameter to specify data type

All OBJECTIDs set to -1

CSV files for tables

Send a table from R to ArcGIS with a CSV:

> write.csv(somedata, "C:/Temp/SomeData.csv", row.names=FALSE, na="")

CSVs may be used directly in ArcGIS for certain tasks. But often it is
necessary to convert them to more structured format, such as a
geodatabase table or DBF file:

CSV files for feature classes
‒ Same limitations as with tables

‒ Cannot easily handle geometries other than points

Send points from ArcGIS to R with a CSV:

> points <- read.csv("C:/Temp/Points.csv", stringsAsFactors=FALSE)

From the
Spatial Stats
toolbox!?

For date columns, use colClasses parameter to specify data type

W
W

W
.P
H
D
C
O
M
IC

S
.C
O
M

NULL values written as
"NULL"; R converts
column to character
data type!

CSV files for feature classes

Send points from R to ArcGIS with a CSV:

> write.csv(points, "D:/Temp/Points2.csv", row.names=FALSE, na="")

Only needed if you wish
to save the layer

Makes an in-memory
feature layer

Make sure points has columns for x and y coordinates

DBF files for tables

+ Suitable as default format in ArcGIS, but:

‒ Significant limitations: 10 char column names; date
fields do not have times; little support for NULL values

Read a DBF file into R:

Write a DBF file from R:

> library(foreign)
> somedata <- read.dbf("C:/Temp/SomeData.dbf", as.is=TRUE)

> write.dbf(somedata, "C:/Temp/SomeData2.dbf", factor2char=TRUE)

Shapefiles for vector data
+ Suitable as default format in ArcGIS

‒ Same limitations as DBF: 10 char column names; date
fields do not have times; little support for NULL values

Read a shapefile into R:

Write a shapefile from R:

> library(rgdal)
> points <- readOGR("D:/Temp", "Points", stringsAsFactors=FALSE)
> points$SomeDateTime <- as.POSIXct(points$SomeDateTime)

> writeOGR(points, "D:/Temp", "Points", driver="ESRI Shapefile")

For POSIXct (etc.) columns, writeOGR creates a TEXT column in the shapefile.

For DATE columns, readOGR creates a
character column in the returned data.frame.
We must parse it, e.g. using as.POSIXct().

Personal and file geodatabases
+ Multiple tables and feature classes in single file or dir.

+ Avoids archaic limitations of CSV, DBF, and shapefile

‒ Different R packages needed depending on scenario

Personal geodatabase (.mdb file)

± MS Access format; can open in many tools; can be hard on Linux

‒ Total file size limited to 2 GB

‒ ESRI is depreciating this format

File geodatabase (.gdb directory)

+ No size limitation

‒ Proprietary ESRI format; limited interoperability

With the RODBC package:

Read a table from a personal GDB (or other Access DB):

Write a table to a personal GDB (or other Access DB):

> library(RODBC) # May not be available on all Linux distros
> conn <- odbcConnectAccess("D:/Temp/Data.mdb") # odbcConnect on Linux
> data <- sqlQuery(conn, "SELECT * FROM SomeData", stringsAsFactors=FALSE)
> close(conn)

> library(RODBC)
> conn <- odbcConnectAccess("D:/Temp/Data.mdb")
> sqlWrite(conn, data, "MyNewTable", rownames=FALSE,

varTypes=c(SomeDateTime="datetime"))
> close(conn)

Necessary for ArcGIS to add or
recognize the table’s OBJECTID

Neither works with file GDBs!

With the rgdal package:

Read a feature class from a personal or file GDB:

> library(rgdal)
> points <- readOGR("D:/Temp/Data.gdb", "Points", stringsAsFactors=FALSE)
> points$SomeDateTime <- as.POSIXct(points$SomeDateTime)

• You cannot write to geodatabases with rgdal at this time

• In the future, it may be possible to write to file geodatabaseses
if some technical and licensing issues are worked out on CRAN
(but this looks pretty unlikely)

As with shapefiles, for DATE columns, readOGR
creates a character column in the returned
data.frame. Must parse, e.g. using as.POSIXct().

ESRI’s new initiative

https://r-arcgis.github.io/

R-bridge for ArcGIS

• Enables R to read and write any tables or feature
classes that are accessible through ArcGIS

• Brand new: July 2015

• Requires ArcGIS 10.3.1+, R 3.1.0+, MS Windows

• Requires administrator rights to install
• Instructions: https://github.com/R-ArcGIS/r-bridge-install

• Installs the arcgisbinding R library
• Cannot be installed from CRAN (at least right now)

• Only works if ArcGIS is installed; checks your license

• Core implemented with C++, COM, ATL, ArcObjects

• Open source (!) Apache License 2.0

https://github.com/R-ArcGIS/r-bridge-install

With the arcgisbinding package:

Initialize the ArcGIS license:

> library(arcgisbinding)
*** Please call arc.check_product() to define a desktop license.
>
> arc.check_product()
product: ArcGIS Desktop
license: Advanced
build number: 10.3.1.4959
binding dll: rarcproxy
>

With the arcgisbinding package:

Read a table into R:

> dataset <- arc.open("D:/Temp/Data.mdb/SomeData") # Open the dataset
> arcdf <- arc.select(dataset) # Get an arc.data instance of data.frame
> summary(arcdf)
OBJECTID SomeDateTime SomeInt SomeFloat SomeString
Min. : 1 Min. :38162 Min. :-2.147e+09 Min. : 8395 Length:949
1st Qu.:238 1st Qu.:38171 1st Qu.: 2.380e+02 1st Qu.: 9862 Class :character
Median :475 Median :38180 Median : 4.750e+02 Median :10011 Mode :character
Mean :475 Mean :38184 Mean :-2.262e+06 Mean :10009
3rd Qu.:712 3rd Qu.:38194 3rd Qu.: 7.120e+02 3rd Qu.:10155
Max. :949 Max. :38211 Max. : 9.490e+02 Max. :11274

NA's :1 NA's :1

NULL integers converted to -2147483647

Datetime values converted to floating point (number of days since 1899-12-30?)

Strings not automatically
converted to factors
(good, in my opinion)

With the arcgisbinding package:

Read a feature class into R:

> dataset <- arc.open("D:/Temp/Data.mdb/Points") # Open the dataset
> arcdf <- arc.select(dataset) # Get an arc.data instance of data.frame
> points <- arc.data2sp(arcdf) # Convert to SpatialPointsDataFrame object
> library(sp) # Necessary to access sp functions
> summary(points)
Object of class SpatialPointsDataFrame
Coordinates:

min max
coords.x1 -703555.8 633107.0
coords.x2 -663940.9 793006.7
Is projected: TRUE
proj4string :
[+proj=aea +lat_1=38 +lat_2=30 +lat_0=34 +lon_0=-73 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0]
Number of points: 949
Data attributes:

OBJECTID SomeDateTime SomeInt SomeFloat SomeString
Min. : 1 Min. :38162 Min. :-2.147e+09 Min. : 8395 Length:949
1st Qu.:238 1st Qu.:38171 1st Qu.: 2.380e+02 1st Qu.: 9862 Class :character
Median :475 Median :38180 Median : 4.750e+02 Median :10011 Mode :character
Mean :475 Mean :38184 Mean :-2.262e+06 Mean :10009
3rd Qu.:712 3rd Qu.:38194 3rd Qu.: 7.120e+02 3rd Qu.:10155
Max. :949 Max. :38211 Max. : 9.490e+02 Max. :11274

NA's :1 NA's :1

With the arcgisbinding package:

Write a table or feature class from R:
> summary(df)

OBJECTID SomeDateTime SomeInt SomeFloat SomeString
Min. : 1 Min. :2004-06-24 07:27:04 Min. : 1.0 Min. : 8395 Length:949
1st Qu.:238 1st Qu.:2004-07-03 11:28:26 1st Qu.:238.8 1st Qu.: 9862 Class :character
Median :475 Median :2004-07-11 13:18:43 Median :475.5 Median :10011 Mode :character
Mean :475 Mean :2004-07-15 14:40:21 Mean :475.5 Mean :10009
3rd Qu.:712 3rd Qu.:2004-07-26 11:06:12 3rd Qu.:712.2 3rd Qu.:10155
Max. :949 Max. :2004-08-11 18:58:50 Max. :949.0 Max. :11274

NA's :1 NA's :1 NA's :1

> arc.write("D:/Temp/Data.mdb/SomeData2", df)

Converted POSIXct values to floating point
(number of seconds since 1970-01-01?)

Assigned new OBJECTID,
renamed our column

Recommended approach

Write

Tables, vectors
in geodatabase

Read

Read:
• For tables in personal GDB, use RODBC
• Otherwise use rgdal or arcgisbinding

Write:
• For tables in personal GDB, use RODBC
• Otherwise use arcgisbinding

Alternative approach:
If you can tolerate the limitations of shapefile and DBF

Shapefiles,
DBFs

Shapefiles,
DBFs

Use writeOGR (from rgdal)
and write.dbf (from foreign)

Use readOGR (from rgdal)
and read.dbf (from foreign)

In this workshop

Write

Vectors in file
geodatabase

Read

We only need to send vector data
from ArcGIS to R. We will use a file
GDB to facilitate cross-platform use
and read from it with rgdal.

In our exercise, we do not need to
send tables or vector data from R
back to ArcGIS.

Rasters
Reading a raster into R:

Writing a raster from R:

> library(raster)
> r <- raster("D:/Temp/Depth.img")
> r
class : RasterLayer
dimensions : 1260, 1200, 1512000 (nrow, ncol, ncell)
resolution : 0.01666667, 0.01666667 (x, y)
extent : -82, -62, 24, 45 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
data source : D:\Temp\Depth.img
names : Depth
values : 0, 6282 (min, max)

> writeRaster(r, "D:/Temp/Depth2.img") # Options for data type, compression, etc.

For raster data, I recommend .IMG format
• Supports all pixel types, raster attribute tables, statistics, compression,

and very large dimensions

• GeoTIFF is an acceptable alternative, but less flexible, in my experience

Let’s read our sightings
into R…

