Extrapolating with density surface models

Laura Mannocci

Workshop on spatial models for distance sampling - Oct 2015 - Duke

Case study

Extrapolating cetacean densities into the unsurveyed high seas of the western North Atlantic

Laura Mannocci, Jason J Roberts, David L Miller, Patrick N Halpin

Case study

"Here be dragons"

Extrapolating cetacean densities into the unsurveyed high seas of the western North Atlantic

Laura Mannocci, Jason J Roberts, David L Miller, Patrick N Halpin

Acknowledgements

• Observers, crews, funding agencies, and everyone responsible for conducting the surveys:

- Many people who shared surveys, provided advice, and reviewed results: Suzanne Bates, Elizabeth Becker, Tim Cole, Peter Corkeron, Andrew DiMatteo, Megan Ferguson, Karin Forney, Lance Garrison, Tim Gowan, Jim Hain, Phil Hammond, Jolie Harrison, Christin Khan, Anu Kumar, Erin LaBrecque, Claire Lacey, Gwen Lockhart, Bill McLellan, Dave Miller, Richard Pace, Debi Palka, Andy Read, Vincent Ridoux, Rob Schick, Sofie Van Parijs, Gordon Waring, Amy Whitt and many others...
- Our funders:

INTRODUCTION

Fisheries

Ship traffic

Military sonars

INTRODUCTION

Fisheries

Military sonars

To evaluate the impacts of these human activities on cetacean populations in the high seas, we need density estimates

Large regions of the high seas have never been surveyed

Our goal: to produce the most reliable density estimates for all cetacean species in the U.S. Navy AFTT area

NAVY Atlantic Fleet Testing & Training Area

Our goal: to produce the most reliable density estimates for all cetacean species in the U.S. Navy AFTT area

NAVY Atlantic Fleet Testing & Training Area

U.S. surveys only covered a fraction of the AFTT area \rightarrow extrapolate carefully

Our goal: to produce the most reliable density estimates for all cetacean species in the U.S. Navy AFTT area

NAVY Atlantic Fleet Testing & Training Area

U.S. surveys only covered a fraction of the AFTT area \rightarrow extrapolate carefully

To extrapolate carefully, we:

(1) Built models with environmental covariates only

• • • •

Spatial covariates	-Latitude, Longitude
Physiographic covariates	-Depth -Slope -Distance to shore -Distance to isobaths

90°W

80°W

70°W

60°W

This is what would happen if we use distance to shore as a covariate:

30°W 20°W 60°W 50°W 40°W 110°W 100°W 90°W 80°W 70°W -60°N High : 1.71237e+006 Surveyed Not surveyed Low: 0.0288631 60°N-10 s(DistToShore) -50°N 50°N-0 -40°N 50000 1000000 1500000 2000000 DistToShore 40°N-Aberrant -30°N predictions 30°N--20°N 20°N-0 250 500 1,000 Km

50°W

Predicted density map for beaked whales

90°W

80°W

70°W

60°W

This is what would happen if we use distance to shore as a covariate:

60°W 50°W 40°W 30°W 20°W 110°W 100°W 90°W 80°W 70°W -60°N High : 1.71237e+006 Surveyed Not surveyed Low: 0.0288631 60°N 9 s(DistToShore) -50°N 50°N-0 40°N 50000 1000000 1500000 2000000 DistToShore 40°N-Aberrant -30°N Dangerous extrapolation predictions 30°Nbeyond the covariate values sampled by surveys -20°N 20°N-1,000 0 250 500 Km

50°W

Predicted density map for beaked whales

Spatial covariates	-Latitude, Longitude
Physiographic covariates	-Depth -Slope -Distance to shore -Distance to isobaths
Physical covariates	-Sea surface temperature -Distance to SST fronts -Sea level anomaly

Spatial covariates	-Latitude, Longitude
Physiographic covariates	-Depth -Slope -Distance to shore -Distance to isobaths
Physical covariates	-Sea surface temperature -Distance to SST fronts -Sea level anomaly
Biological covariates	 -Chlorophyll concentration -Primary productivity -Biomass / production of zooplankton and micronekton (SEAPODYM outputs)

To extrapolate carefully, we:

(1) Built models with environmental covariates only

(2) Incorporated surveys from relevant ecological biomes in the North Atlantic

Increase the coverage of ecological biomes encompassed by the AFTT area

To extrapolate carefully, we:

(1) Built models with environmental covariates only

- (2) Incorporated line transect surveys from relevant ecological biomes in the North Atlantic
- (3) Fitted parsimonious models

Limited degrees of freedom

Limited the number of covariates to help understand the primary environmental drivers of cetacean abundances

Limited the number of covariates to help understand the primary environmental drivers of cetacean abundances

 \rightarrow Better generalize predictions to unsurveyed areas

In total, we modeled 29 cetacean taxa

Striped dolphin

Sei whale

Summer model

Sei whale

Summer model	Surveys: EC GOM CAR MAR
-----------------	-------------------------------------

		Surveys:	Predictors:	Expl Dev 38.5%
<u>Sei whale</u>	Summer	EC	Depth	
	model	GOM	Sea level anomaly	
		CAR	Sea surface temperature	
		MAR	Production of micro	onekton

Striped dolphin

Year-round model

	[]	Surveys:	Predictors:	Expl Dev 57%
<u>Striped dolphin</u>	Year-round model	EC GOM CAR	Depth Production of micro Chlorophyll concent	onekton tration
		MAR EU	Distance to SST from	nts

CAVEATS

Strong assumptions on the shapes of cetacean-environment relationships beyond the sampled covariate ranges

Example: sei whale

Possible underestimation of sei whale abundance in cold northern waters

Predictions less reliable in certain areas

SST in February (°C)

Polar waters with colder SST in winter

Log CHL in June (mg.m⁻³)

North Atlantic gyre with lower CHL in summer

Lack of data for evaluating model predictions in the high seas

Qualitative assessment of predictions with presence only data from the literature:

Lack of data for evaluating model predictions in the high seas

Qualitative assessment of predictions with presence only data from the literature:

Tracks of sei whales tagged in the Azores

Clark and Gagnon 2004

Hydrophones from the Navy SOSUS These density estimates will be entered in the Navy Acoustic Effects Model to estimate potential incidental 'takes' of marine mammals in the AFTT area

 As new survey data become available, we plan to continuously update and refine our models to provide the most accurate estimates in the AFTT area

- As new survey data become available, we plan to continuously update and refine our models to provide the most accurate estimates in the AFTT area
- The incorporation of surveys from the North Atlantic gyre and polar waters would greatly improve the models

Thank you for your attention!

Sei whale

Striped dolphin

log10(DistToFront1)

sqrt(EpiMnkPP)

Two-stage density surface modeling

(1) Fit detection functions and estimate abundance on segments

$$N_j = \sum_{r=1}^{R_j} \frac{S_{rj}}{\mathsf{g}(\mathbf{0}) p_j}$$

 R_j number of observations in segment *j* S_{rj} size of the rth group in segment *j* p_j probability of detection on segment *j* g(0) probability of detection on the trackline

(2) Fit a GAM with estimated abundance as the response and segment area as the offset

$$E(N_j) = Aj \exp[\beta_0 + \sum_k f_k(zjk)]$$

 N_j is assumed to follow a Tweedie distribution The offset A_j is the area of segment j f_k are smooth functions of the covariates z_{jk} β_0 is the intercept