Lecture 1: distance sampling & density surface models

Why model abundance spatially?

Maps

- Black bears in Alaska
- Heterogeneous spatial distribution

Spatial decision making

- Block Island, Rhode Island
- First offshore wind in the USA
- Spatial impact assessment

Back to regular distance sampling

How many animals are there? (500!)

Plot sampling

Strip transect

Detectability matters!

- We've assumed certain detection so far
- This rarely happens in the field
- Distance to the **object** is important
- Detectability should decrease with increasing distance

Distance and detectability

Credit Scott and Mary Flanders

Line transect

Line transects - distances

Distance sampling animation

Survey area Histogram of observed distances 35 30 25 Frequency 2 15 9 2 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.00 Distance

Detection function

Distance sampling estimate

- Surveyed 5 lines (each area 1 * 2 * 0.025)
 Total covered area a = 5 * 1 * (2 * 0.025) = 0.25
- Probability of detection $\hat{p} = 0.546$
- Saw n = 76 animals
- Inflate to $n/\hat{p} = 139.198$
- Estimated density $\hat{D} = \frac{n/\hat{p}}{a} = 556.8$
- Total area A = 1
- Estimated abundance $\hat{N} = \hat{D}A = 556.8$

Reminder of assumptions

- 1. Animals are distributed independent of lines
- 2. On the line, detection is certain
- 3. Distances are recorded correctly
- 4. Animals don't move before detection

What are detection functions?

- \mathbb{P} (detection | animal at distance x)
- "Integrate out distance" == "area under curve" == \hat{p}
- Many different forms, depending on the data
- All share some characteristics

Fitting detection functions (in R!)

- Using the package Distance
- Function ds() does most of the work
- More on this in the practical!

library(Distance)
df_hn <- ds(distdata, truncation=6000)</pre>

Horvitz-Thompson-like estimators

- Once we have \hat{p} how do we get \hat{N} ?
- Rescale the (flat) density and extrapolate

$$\hat{N} = \frac{\text{study area}}{\text{covered area}} \sum_{i=1}^{n} \frac{s_i}{\hat{p}_i}$$

- s_i are group/cluster sizes
- \hat{p}_i is the detection probability (from detection function)

Hidden in this formula is a simple assumption

- Probability of sampling every point in the study area is equal
- Is this true? Sometimes.
- If (and only if) the design is randomised

Many faces of randomisation

random placement

random offset parallel lines

		1	1	1	1	1	1	1	1	1	
		1	1	1	1	1	1	1	1	1	
		1			1	1	1	1	1	1	
		1	1		1	1	1	1	1	1	
		1	1	1	1	1	1	1	1	1	
		1			1	1	1	1	1	1	
		1	1		1	1	1	1	1	1	
		1	1	1	1	1	1	1	1	1	
		1	1		1	1	1	1	1	1	
		1	1	1	1	1	1	1	1	1	
		1			1	1	1	1	1	1	
		1	1	1	1	1	1	1	1	1	
		1			1		1	1		1	
		1	1		1	1	1	1		1	
		1	1	1	1	1	1	1	1	1	
		1			1	1	1	1	1	1	
		1	1		1	1	1	1	1	1	
		1	1	- 1	1	1	1	1	1	1	
		1			1	1	1	1	1	1	
		1	1		1	1	1	1	1	1	
		1	1	- 1	1	1	1	1	1	1	
		1			1	1	1	1	1	1	
		1			1			1		1	
		1			1	1	1	1	1	1	
		1			1		1	1		1	
		1	1		1	1	1	1	1	1	
		1	1	- 1	1	1	1	1	1	1	
		1	1	1	1	1	1	1	1	1	
		1			1	1		1	1		

random offset zigzag

Randomisation & coverage probability

H-T equation above assumes even coverage

 (or you can estimate)

Extra information

Extra information - depth

Extra information - SST

We should model that!

DSM flow diagram

Modelling requirements

- Account for effort
- Flexible/interpretable effects
- Predictions over an arbitrary area
- Include detectability

Accounting for effort

Effort

- Have transects
- Variation in counts and covars along them
- Want a sample unit w/ minimal variation
- "Segments": chunks of effort

Chopping up transects

Physeter catodon by Noah Schlottman

Flexible, interpretable effects

Smooth response

Explicit spatial effects

Predictions

Predictions over an arbitrary area

- Don't want to be restricted to predict on segments
- Predict within survey area
- Extrapolate outside (with caution)
- Working on a grid of cells

Detection information

Including detection information

- Two options:
 - adjust areas to account for **effective effort**
 - use **Horvitz-Thompson estimates** as response

Count model

- Area of each segment, A_j \circ use $A_j \hat{p}_j$
- \bigcirc effective strip width ($\hat{\mu}=w\hat{p}$)
- Response is counts per segment
- "Adjusting for effort"

Estimated abundance

- Effort is area of each segment
- Estimate H-T abundance per segment

$$\hat{n}_j = \sum_i \frac{s_i}{\hat{p}_i}$$

(where the *i* observations are in segment *j*)

Detectability and covariates

- 2 covariate "levels" in detection function
 - "Observer"/"observation" -- change within segment
 - "Segment" -- change **between** segments
- "Count model" only lets us use segment-level covariates
- "Estimated abundance" lets us use either

When to use each approach?

- Generally "nicer" to adjust effort
- Keep response (counts) close to what was observed
- Unless you want observation-level covariates

Data requirements

What do we need?

- Need to "link" data
 - Distance data/detection function
 - 🗹 Segment data
 - 🗹 Observation data (segments 🔗 detections)

More info on course website.

Density surface model data setup for package dsm

Example data

Example data

Example data

Sperm whales

- Hang out near canyons, eat squid
- Surveys in 2004, US east coast
- Thanks to Debi Palka (NOAA NEFSC), Lance Garrison (NOAA SEFSC) for data. Jason Roberts (Duke University) for data prep.

Recap

- Model counts or estimated abundance
- The effort is accounted for differently
- Flexible models are good
- Incorporate detectability
- 2 tables + detection function needed