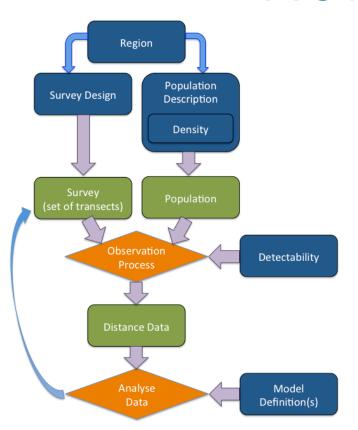
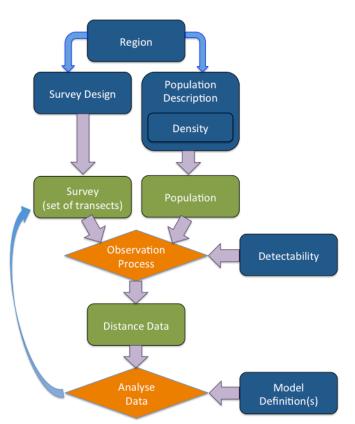
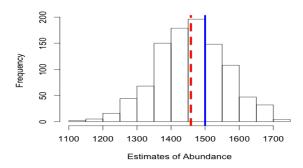
Distance Sampling Simulations


Overview

- Why simulate?
- How it works
- Automated survey design
 - Coverage probability
 - Which design?
 - Design trade-offs
- Defining the population
 - Population description
 - Detectability
- Example Simulations

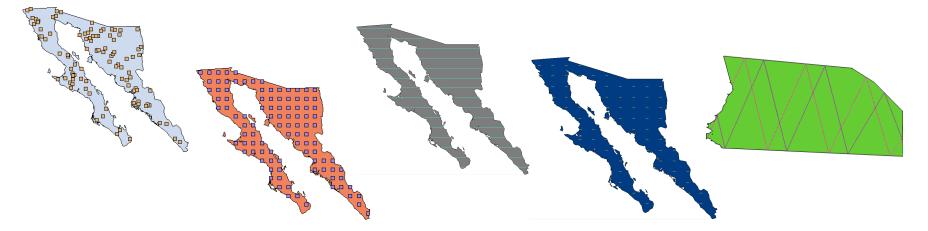
Why Simulate?


- Surveys expensive, simulations cheap!
- Test different survey designs
- Test survey protocols
- Investigate analysis properties
- Investigate violation of assumptions


How it works

- Blue rectangles indicate information supplied by the user.
- Green rectangles are objects created by DSsim in the simulation process.
- Orange diamonds indicate the processes carried out by DSsim.

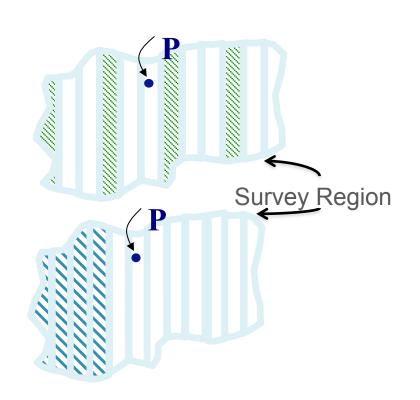
How it works


Assess:

- Bias
- Precision
- Cl coverage

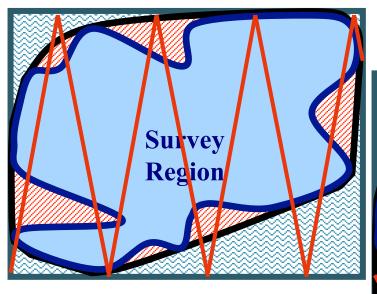
Across different designs/ scenarios

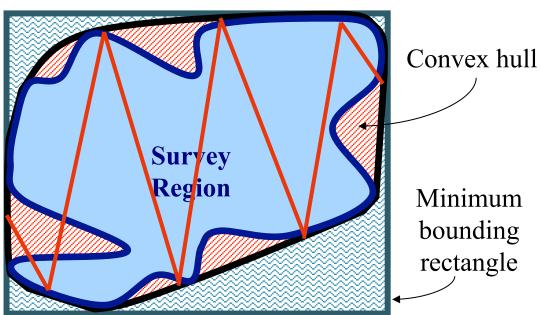
Automated Survey Design


- Generate random sets of transects according to an algorithm
 - Assess design properties
 - Generate multiple transect sets for simulations

Automated Survey Design

- Coverage Probability
 - Uniform coverage probability, $\pi = 1/3$


- Uniform coverage probability, $\pi = 1/3$
- Uneven coverage for any given realisation



Which Design?

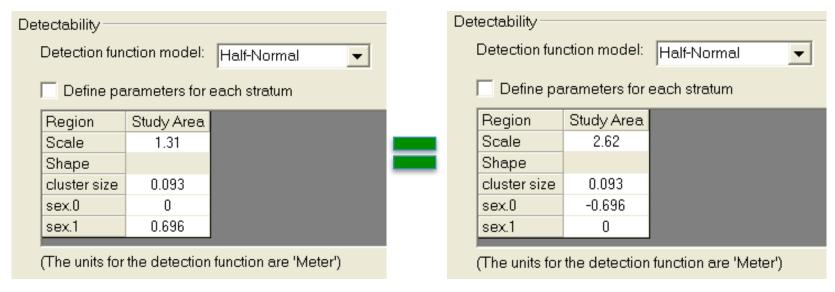
- Uniformity of coverage probability
- Even-ness of coverage within any given realisation
- Overlap of samplers
- Cost of travel between samplers
- Efficiency when density varies within the region

Design Trade-Offs

Population Definition

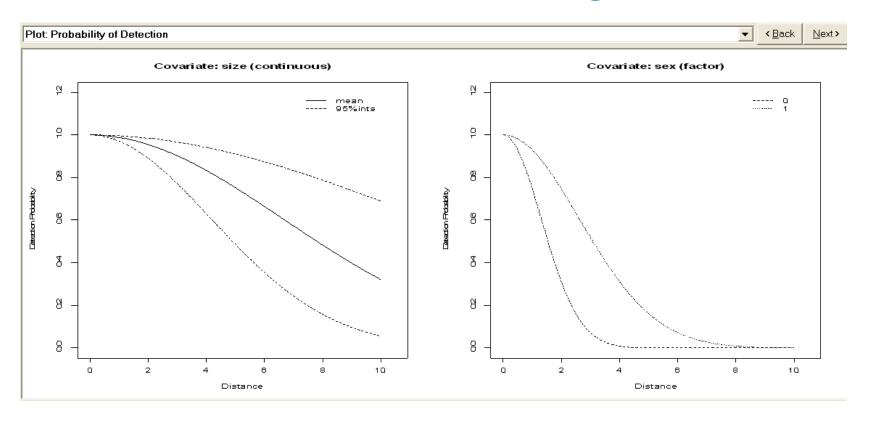
- True population size?
- Occur as individuals or clusters?
- Covariates which will affect detectability?
- How is the population distributed within the study region?
 - Ideally have a previously fitted density surface
 Otherwise test over a range of plausible distributions

- Distance needs:
 - shape and scale parameters on the natural scale
 - covariate parameters on the log scale


Golftees project

```
Detection Fct/Global/Parameter Estimates
Effort
                    210,0000
                                                    Natural
 # samples
 Width
                    4.000000
 # observations:
                                                    scale
Model
   Half-normal kev, k(v) = Exp(-v^**2/(2*s^**2))
                                                             Log scale
   s = A(1) * Exp(fcn(A(2)) + fcn(A(3)))
   Parameter A(1) is the intercept of the scale parameter s.
   Parameter A(2) is the coefficient of covariate CLUSTER SIZE.
   Parameter A(3) is the coefficient of level of factor covariate SEX.
              Point.
                                                            95 Percent.
                           Standard
                                       Percent Coef.
                             Error
  Parameter
              Estimate
                                                         Confidence Interval
                          8370
    A(1)
              2.622
    A(2)
             0.9294E-01 - 0.8172E-01
   A(3)
             -0.6951
                           0.2937
   f(0)
             0.36330
                         0.17850E-01
                                            4.91
                                                      0.32972
                                                                   0.40030
             0.68814
                         0.33810E-01
                                            4.91
                                                      0.62454
                                                                   0.75821
    ESW
              2.7525
                          0.13524
                                                       2.4981
                                                                    3.0329
```

 $\exp(0.268179) = 1.307581$


```
Detection Fct/Summary
Summary for ds object
Number of observations: 162
Distance range
                       : 0 - 4
AIC
                       : 428.572
Detection function:
 Malf-normal kev function
Detection function parameters
Scale coefficient(s):
              estimate
(Intercept) 0.26817900 0.27140001
size
            0.09314751 0.08176431
sex1
            0.69600047 0.29401571
                       Estimate
Average b
                      0.6882835 0.05258548 0.07640090
N in covered region 235.3681131 21.00939868 0.08926187
```

In simulation:

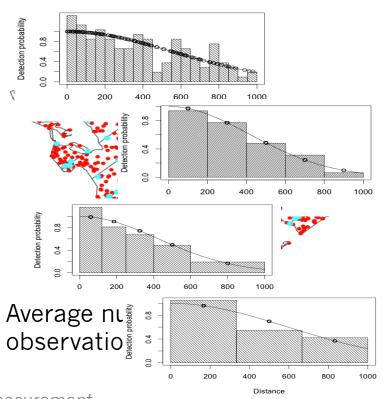
 $\exp(\log(1.307581) + 0.696) = 2.622633$

 $\exp(\log(2.622) \cdot 0.696) = 1.307265$

Analysis

- Data Filter must specify a right truncation distance
- Model Definition must be either MRDS or MA
 - MRDS for fitting a specific model
 - MA for model selection (Note: MA model definitions require the creation of analyses)

Any questions so far...

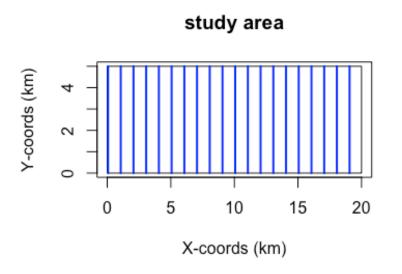

Example Simulations

- To bin or not to bin?
- Testing pooling robustness in relation to truncation distance.
- Comparison of subjective and random designs.

To Bin or Not to Bin?

Simulation:

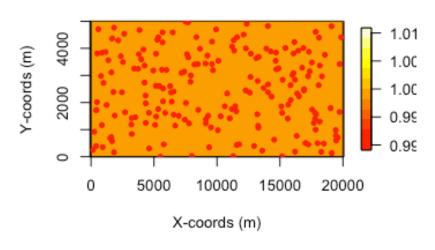
- Generated 999 datasets
- Added multiplicative measurement error
 - Distance = True Distance * R
 - R = (U + 0.5), where U~Beta(θ , θ)¹
 - No error, $\sim 15\%$ CV ($\theta = 5$), $\sim 30\%$ CV ($\theta = 1$)
- Analysed them in difference ways
 - Exact distances, 5 Equal bins, 5 Unequal bins, 3 Equal bins
- Model selection on minimum AIC
 - Half-normal v Hazard rate



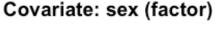
¹Marques T. (2004) Predicting and correcting bias caused by measurement error in line transect sampling using multiplicative error models Biometrics 60:757--763

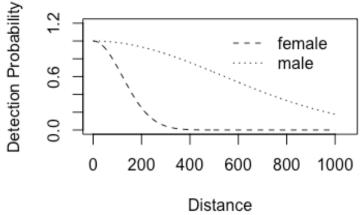
To Bin or Not to Bin Results

	Exact Distances	5 Equal Bins	5 Unequal Bins	3 Equal Bins
No	-1.16% bias	-1.11% bias	-0.16% bias	-0.19% bias
Error	210 SE	217 SE	221 SE	255 SE
15% CV	0.48% bias	o.5% bias	1.36% bias	1.72%bias
	214 SE	221 SE	221 SE	264 SE
30% CV	6.66% bias	6.61% bias	7.43% bias	8.20% bias
	237 SE	250 SE	262 SE	338 SE


DSsim vignette

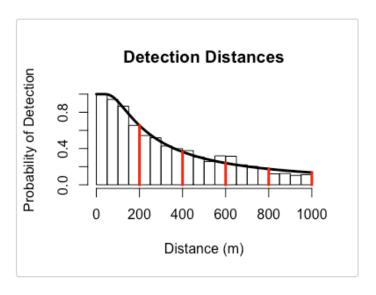
- Rectangular study region
- Systematic parallel transects with a spacing of 1000m


DSsim vignette


Density Surface with Example Population

- Uniform density surface
- Population size of 200
- 50% male, 50% female

DSsim vignette

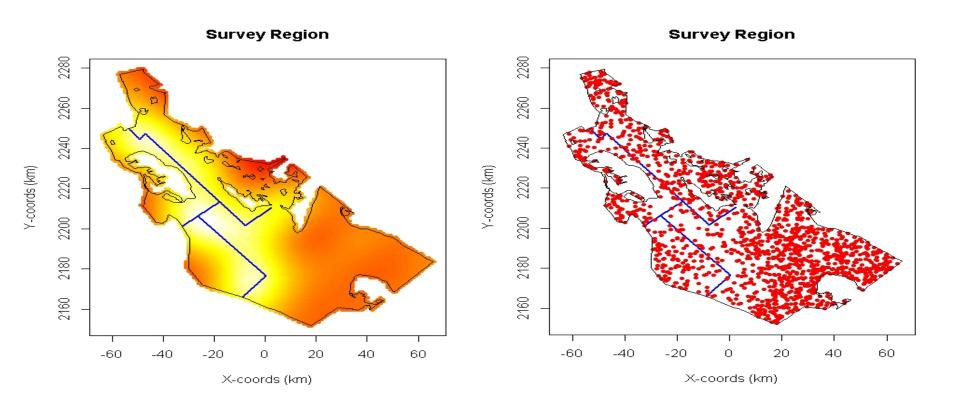

- Half-normal shape for detectability
- Scale parameter of 120 for the females
- Scale parameter of ~540 for the males

DSsim vignette

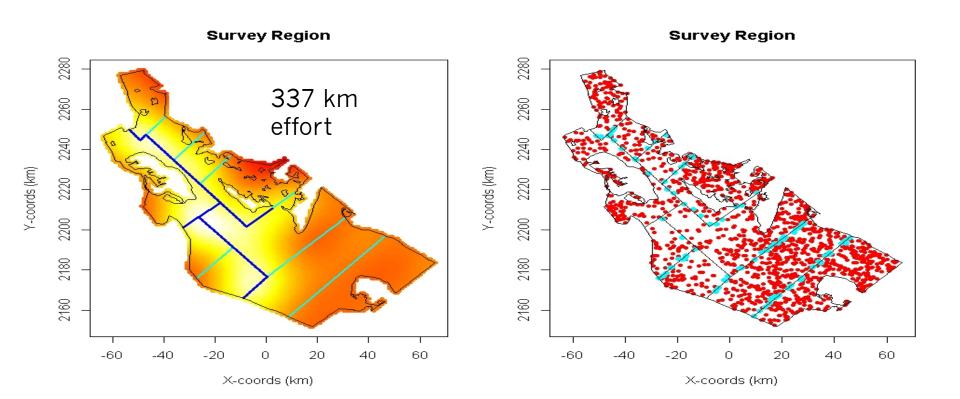
 $\exp(\log(120)+1.5) = 537.8$

- Half-normal shape for detectability
- Scale parameter of 120 for the females
- Scale parameter of ~540 for the males

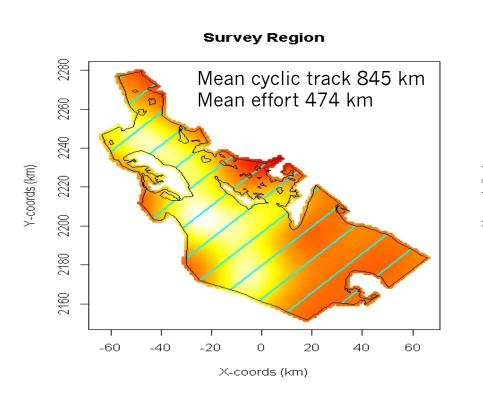
DSsim vignette

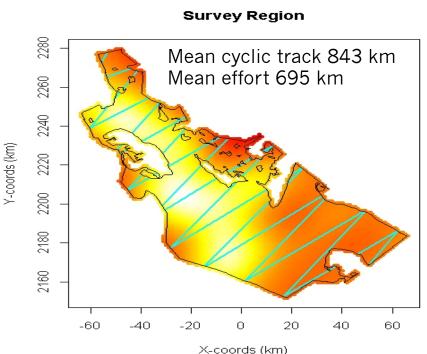

- Two types of analyses:
 - hn v hr
 - hn ~ sex
- Selection criteria: AIC

Histogram of data from covariate simulation with manually selected candidate truncation distances.


Results HN v HR:

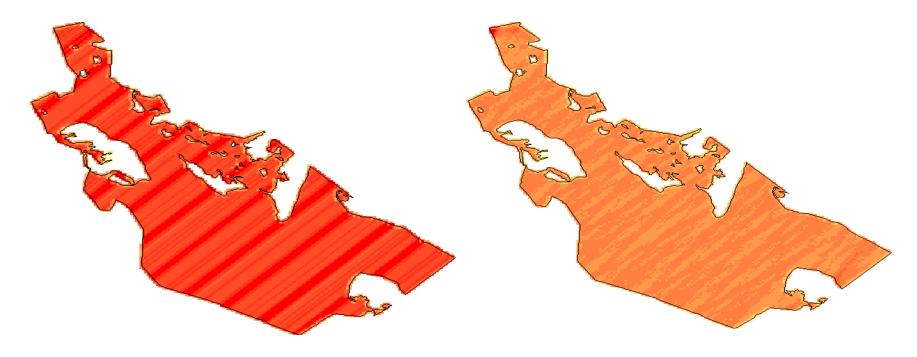
Truncation	mean n	mean Ñ	mean se	$SD(\hat{N})$	%Bias	RMSE	% CI Coverage
200	66	197	34.27	34.05	-1.32	34.13	97.5
400	102	190	31.06	34.79	-5.13	36.25	87.9
600	128	190	34.04	35.27	-5.24	36.77	81.9
800	144	190	34.31	36.61	-5.10	37.99	77.1
1000	154	184	30.93	39.49	-7.76	42.42	68.1


Example Simulation



Subjective survey design

Random Designs



Coverage probability

Systematic Parallel Design

Equal Spaced Zigzag Design

Simulation

- Generates a realisation of the population based on a fixed N of 1500
- Generates a realisation of the design
 - Different each time for the random designs
 - The same each time for the subjective design
- Simulates the detection process
- Analyses the results
 - Half-normal
 - Hazard-rate
- Repeats a number of times

Practical

- Now attempt the DSsim practical:
 - R version subjective design and parallel v zig zag
 - Distance version parallel v zig zag only
- You will need the library shapefiles.