
Generalized	Additive
Models



Overview
What	is	a	GAM?

What	is	smoothing?

How	do	GAMs	work?

Fitting	GAMs	using	dsm



What	is	a	GAM?



"gam"
1.	 Collective	noun	used	to	refer	to	a	group	of	whales,	or	rarely	also	of

porpoises;	a	pod.

2.	 (by	extension)	A	social	gathering	of	whalers	(whaling	ships).

(via	Natalie	Kelly,	AAD.	Seen	in	Moby	Dick.)



Generalized	Additive	Models
Generalized:	many	response	distributions

Additive:	terms	add	together

Models:	well,	it's	a	model…



What	does	a	model	look	like?
Count	 	distributed	according	to	some	count
distribution

Model	as	sum	of	terms

nj



Mathematically...
Taking	the	previous	example…

where	 ,	 	count	distribution

= exp [ + s( ) + s( )] +nj Aj p̂j β0 yj Depthj ϵj

∼ N(0, )ϵj σ2 ∼nj

area	of	segment	-	offset
probability	of	detection	in	segment
link	function
model	terms



Response

where	 ,	

= exp[ + s( ) + s( )] +nj Aj p̂j β0 yj Depthj ϵj

∼ N(0, )ϵj σ2 ∼ count	distributionnj



Count	distributions
Response	is	a	count	(not
not	always	integer)

Often,	it's	mostly	zero
(that's	complicated)

Want	response	distribution
that	deals	with	that

Flexible	mean-variance
relationship



Tweedie	distribution

Common	distributions	are	sub-
cases:

	Poisson

	Gamma

	Normal

We	are	interested	in	

(here	 )

Var (count) = ϕE(count)

q = 1 ⇒
q = 2 ⇒
q = 3 ⇒

1 < q < 2
q = 1.2, 1.3,…,1.9



Negative	binomial	distribution
	

Estimate	

Is	quadratic	relationship	a
“strong”	assumption?

Similar	to	Poisson:	

Var (count) =
E(count) + κE(count)2

κ

Var (count) = E(count)



Smooth	terms

where	 ,	 	count	distribution

= exp[ + s( ) + s( )] +nj Aj p̂j β0 yj Depthj ϵj

∼ N(0, )ϵj σ2 ∼nj



Okay,	but	what	about	these	"s"	things?
Think	 =smooth

Want	to	model	the
covariates	flexibly

Covariates	and	response
not	necessarily	linearly
related!

Want	some	wiggles

s



What	is	smoothing?



Straight	lines	vs.	interpolation
Want	a	line	that	is	“close”	to
all	the	data

Don't	want	interpolation	–
we	know	there	is	“error”

Balance	between
interpolation	and	“fit”



Splines
Functions	made	of	other,
simpler	functions

Basis	functions	 ,
estimate	

Makes	the	maths	much
easier

bk

βk

s(x) = (x)∑K
k=1 βkbk



Measuring	wigglyness
Visually:

Lots	of	wiggles	==	NOT	SMOOTH

Straight	line	==	VERY	SMOOTH

How	do	we	do	this	mathematically?

Derivatives!

(Calculus	was	a	useful	class	afterall)



Wigglyness	by	derivatives



Making	wigglyness	matter
Integration	of	derivative	(squared)	gives	wigglyness

Fit	needs	to	be	penalised

Penalty	matrix	gives	the	wigglyness

Estimate	the	 	terms	but	penalise	objective

“closeness	to	data”	+	penalty

βk



Penalty	matrix
For	each	 	calculate	the	penalty

Penalty	is	a	function	of	

	calculated	once

smoothing	parameter	( )	dictates	influence

bk

β

λ SββT

S

λ



Smoothing	parameter



How	wiggly	are	things?
We	can	set	basis	complexity	or	“size”	( )

Maximum	wigglyness

Smooths	have	effective	degrees	of	freedom	(EDF)

EDF	<	

Set	 	“large	enough”

k

k

k



Why	GAMs	are	cool...
Fancy	smooths	(cyclic,
boundaries,	…)

Fancy	responses	(exp
family	and	beyond!)

Random	effects	(by
equivalence)

Markov	random	fields

Correlation	structures

See	Wood	(2006/2017)	for
a	handy	intro



Okay,	that	was	a	lot	of	theory...



Example	data



Example	data



Example	data



Sperm	whales	off	the	US	east	coast
Hang	out	near	canyons,	eat
squid

Surveys	in	2004,	US	east
coast

Combination	of	data	from
2	NOAA	cruises

Thanks	to	Debi	Palka
(NOAA	NEFSC),	Lance
Garrison	(NOAA	SEFSC)
for	data.	Jason	Roberts
(Duke	University)	for	data
prep.



Model	formulation
Pure	spatial,	pure	environmental,	mixed?

May	have	some	prior	knowledge

Biology/ecology

What	are	drivers	of	distribution?

Inferential	aim

Abundance

Ecology



Fitting	GAMs	using	dsm



Translating	maths	into	R

where	 ,	 	count	distribution	

inside	the	link:	formula=count ~ s(y)
response	distribution:	family=nb()	or	family=tw()
detectability:	ddf.obj=df_hr
offset,	data:	segment.data=segs, observation.data=obs

= exp[ + s( )] +nj Aj p̂j β0 yj ϵj

∼ N(0, )ϵj σ2 ∼nj



Your	first	DSM

dsm	is	based	on	mgcv	by	Simon	Wood

library(dsm)
dsm_x_tw <- dsm(count~s(x), ddf.obj=df,
                segment.data=segs, observation.data=obs,
                family=tw())



What	did	that	do?
summary(dsm_x_tw)

Family: Tweedie(p=1.326) 
Link function: log 

Formula:
count ~ s(x) + offset(off.set)

Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -19.8115     0.2277  -87.01   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
       edf Ref.df     F  p-value    
s(x) 4.962  6.047 6.403 1.07e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) =  0.0283   Deviance explained = 17.7%
-REML = 409.94  Scale est. = 6.0413    n = 949



Plotting
plot(dsm_x_tw)
Dashed	lines	indicate	+/-	2
standard	errors

Rug	plot

On	the	link	scale

EDF	on	 	axisy



Adding	a	term
Just	use	+

dsm_xy_tw <- dsm(count ~ s(x) + s(y),
                 ddf.obj=df,
                 segment.data=segs,
                 observation.data=obs,
                 family=tw())



Summary
summary(dsm_xy_tw)

Family: Tweedie(p=1.306) 
Link function: log 

Formula:
count ~ s(x) + s(y) + offset(off.set)

Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -20.0908     0.2381  -84.39   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
       edf Ref.df     F  p-value    
s(x) 4.943  6.057 3.224 0.004239 ** 
s(y) 5.293  6.420 4.034 0.000322 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) =  0.0678   Deviance explained = 27.3%
-REML = 399.84  Scale est. = 5.3157    n = 949



Plotting

scale=0:	each	plot	on	different	scale
pages=1:	plot	together

plot(dsm_xy_tw, pages=1)



Bivariate	terms
Assumed	an	additive	structure

No	interaction

We	can	specify	s(x,y)	(and	s(x,y,z,...))



Thin	plate	regression	splines
Default	basis

One	basis	function	per	data	point

Reduce	#	basis	functions	(eigendecomposition)

Fitting	on	reduced	problem

Multidimensional



Thin	plate	splines	(2-D)



Bivariate	spatial	term
dsm_xyb_tw <- dsm(count ~ s(x, y),
                 ddf.obj=df,
                 segment.data=segs,
                 observation.data=obs,
                 family=tw())



Summary
summary(dsm_xyb_tw)

Family: Tweedie(p=1.29) 
Link function: log 

Formula:
count ~ s(x, y) + offset(off.set)

Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -20.2745     0.2477  -81.85   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
         edf Ref.df     F  p-value    
s(x,y) 16.89  21.12 4.333 3.73e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) =  0.102   Deviance explained = 34.6%
-REML = 394.86  Scale est. = 4.8248    n = 949



Plotting...	erm...
plot(dsm_xyb_tw)



Let's	try	something	different

Still	on	link	scale

too.far	excludes	points	far
from	data

plot(dsm_xyb_tw, select=1,
     scheme=2, asp=1)



Comparing	bivariate	and	additive	models



Let's	have	a	go...


