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1.3 Covariates in the detection function

In this practical, we illustrate fitting multiple covariate distance sampling (MCDS) models
to point transect data using a bird survey in Hawaii; data on an abundant species, the
Hawaii amakihi (Hemignathus virens) is used. This practical is based on the case study
shown in Section 5.3.2 of Buckland et al. (2015) which duplicates the analysis presented
in Marques et al. (2007). This set of data is included in ‘Distance for Windows’ as one of
the Sample Projects: you can open this project (entitled amakihi.zip) in the Sample project
directory underneath ‘My Distance projects’ directory residing under ‘My Documents’. Here,
we describe the analysis of these data using Distance in R.

Objectives of this practical

1. Introduce different types of plots to explore covariates

2. Add covariates to the detection function

3. Plot the detection functions.

Importing the data

Analysis begins by importing the data from a comma-delimited file (this file was created by
copying the data from the amakihi Distance project and removing a few columns). Remember
to copy the datafile to your R workspace or specify the directory where the data file is stored
in the file name
# Import Amakihi data
amakihi <- read.csv(file="amakihi.csv")

Check that it has been imported correctly.
head(amakihi)

These data are made of of eight columns:

• Study.Area - name of the study area

• Region.Label - survey dates which are used as ‘strata’
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• Sample.Label - point transect identifier

• Effort - survey effort (which is always 1 because point transects used)

• distance - perpendicular distances

• OBS - initials of the observer

• MAS - minutes after sunrise

• HAS - hour after sunrise

The latter three columns are the covariates to be considered for possible inclusion into the
detection function.

There a couple of records with missing distances and so can be deleted with the following
command:
# Get rid of missing values
amakihi <- amakihi[!is.na(amakihi$distance), ]

In this command,

• records in amakihi are selected using the square brackets []

• amakihi is a data frame and so selection can be performed on either rows or columns
i.e. [rows, columns]. In this case, the selection is performed on the rows (because
the selection criteria is before the comma) and all columns will be retained

• the rows selected as those where the distances (stored in amakihi$distance) are not
missing. The function is.na selects elements that are missing; the symbol ! means
‘not’, and so !is.na selects elements that are not missing.

Exploratory data analysis

It is important to gain an understanding of the data prior to fitting detection functions
(Buckland et al. 2015). With this in mind, preliminary analysis of distance sampling data
involves:

• assessing the shape of the collected data,
• considering the level of truncation of distances, and
• exploring patterns in potential covariates.

Using the summary function provides a quick way to summarise of all the columns in the
data set.

We begin by assessing the distribution of distances by plotting histograms with different
number of bins and different truncation.

Plot a histogram of the distances with lots of bins and no truncation. In the command below,
seq(0, 260) creates a sequence of numbers from 0 to 260, inclusive, at unit intervals (e.g. 0,
1, 2, 3, . . . , 260):
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par(mfrow=c(2,2))
hist(amakihi$distance, breaks=seq(0,260), main="",xlab = "Distance (m)")

Plot a histogram with lots of bins and truncation at 82.5 - this is the truncation distance
that was used in Marques et al. (2007):
hist(amakihi$distance[amakihi$distance<82.5], breaks=33, main="",xlab = "Distance (m)")

Plot a histogram with truncation at 82.5 but with fewer bins:
hist(amakihi$distance[amakihi$distance<82.5], breaks=10, main="",xlab = "Distance (m)")

An alternative method of displaying the distribution of distances is a boxplot:
boxplot(amakihi$distance, ylab="Distance (m)")

The components of the boxplot are:

• the thick black line indicates the median

• the lower limit of the box is the first quartile (25th percentile) and the upper limit is
the third quartile (75th percentile)

• the height of the box is the interquartile range (75th - 25th quartiles)

• the whiskers extend to the most extreme points which are no more than 1.5 times the
interquartile range.

• dots indicate ‘outliers’ if there are any, i.e. points beyond the range of the whiskers.

This format is probably not as useful as a histogram in a distance sampling context but
boxplots can be useful to compare the distances for discrete groups in the data. Here we use
boxplots to display the distribution of distances recorded by each observer and for each hour
after sunrise. Note how the ~ symbol is used to define the groups.

Boxplots of distances by observer:
# Boxplots by obs
boxplot(amakihi$distance~amakihi$OBS, xlab="Observer", ylab="Distance (m)")

Boxplot of distances for each hour after sunrise:
# Boxplots by hour after sunrise
boxplot(amakihi$distance~amakihi$HAS, xlab="Hour", ylab="Distance (m)")

For minutes after sunrise (a continuous variable), we create a scatterplot of MAS (on the
x-axis) against distances (on the y-axis). The plotting symbol (or character) is selected with
the argument pch:
# Plot of MAS vs distance (using dots)
plot(amakihi$MAS, amakihi$distance, xlab="Minutes after sunrise",

ylab="Distance (m)", pch=20)
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Adjusting the raw covariates

We would like to treat OBS and HAS as factor variables as in the original analysis; OBS
is, by default, treated as a factor variable because it consists of characters rather than
numbers. HAS, on the other hand, consists of numbers and so by default would be treated
as a continuous variable (i.e. non-factor). That is fine if we want the effect of HAS to be
monotonic (i.e. detectability either increases or decreases as a function of HAS). If we want
HAS to have a non-linear effect on detectability, then we need to indicate to R to treat it as a
factor as shown below.
# Convert HAS to a factor
amakihi$HAS <- factor(amakihi$HAS)

The next adjustment is to change the reference level of the observer and hour factor covariates
- the only reason to do this is to get the estimated parameters in the detection function to
match the parameters estimated by ‘Distance for Windows’. By default R uses the first factor
level but by using the relevel function, this can be changed:
# Set the reference level
amakihi$OBS <- relevel(amakihi$OBS, ref="TKP")
amakihi$HAS <- relevel(amakihi$HAS, ref="5")

One final adjustment, and more subtle, is a transformation of the continuous covariate, MAS.
We are entertaining three possible covariates in our detection function: OBS, HAS and MAS.
The first two variables, OBS and HAS, are both factor variables, and so, essentially, we can
think of them as taking on values between 1 and 3 in the case of OBS, and 1 to 6 in the case
of HAS. However, MAS can take on values from -18 (detections before sunrise) to >300 and
the disparity in scales of measure between MAS and the other candidate covariates can lead
to difficulties in the performance of the optimizer fitting the detection functions in R. The
solution to the difficulty is to scale MAS such that it is on a scale (approx. 1 to 5) comparable
with the other covariates.

Dividing all the MAS measurements by the standard deviation (function sd) of those mea-
surements accomplishes the desired compaction in the range of the MAS covariate without
changing the shape of the distribution of MAS values. The na.rm=TRUE argument ensures that
any missing values are ignored.
# Rescale MAS by dividing by standard deviation
amakihi$MAS <- amakihi$MAS/sd(amakihi$MAS, na.rm=TRUE)

Check what this command has done by looking at a summary of the adjusted MAS:
summary(amakihi$MAS)
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Candidate models

With three potential covariates, there are 8 possible combinations for including them in the
detection function:

• No covariates

• OBS

• HAS

• MAS

• OBS + HAS

• OBS + MAS

• HAS + MAS

• OBS + HAS + MAS

Even without considering covariates there are a number of possible key function/adjustment
term combinations and if all key function/covariate combinations are considered the number
of potential models is large. Note that covariates are not allowed if a uniform key function is
chosen and if covariate terms are included, adjustment terms are not allowed. Even with
these restrictions, it is not best practice to take a scatter gun approach to detection function
model fitting. Buckland et al. (2015) considered 13 combinations of key function/covariates.
Here, we look at a subset of these as an illustration of how to incorporate covariates in the
detection function.

If it is not already loaded, then first load the Distance package.

Fit a hazard rate model with no covariates or adjustment terms. By default, line transects
are assumed and because our data are point transects, the argument transect="point" is
specified:
hr.model0 <- ds(amakihi, transect="point", key="hr", truncation=82.5,

adjustment=NULL, order=0)

The fitted model can be investigated using the summary function. Make a note of the AIC
for this model.
summary(hr.model0)

Now fit a hazard rate model with OBS as a covariate in the detection function and make a
note of the AIC. Has the AIC reduced by including a covariate?
hr.model1 <- ds(amakihi, transect="point", key="hr", formula=~OBS,

truncation=82.5)
summary(hr.model1)

Fit a hazard rate model with OBS and HAS in the detection function:
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hr.model2 <- ds(amakihi, transect="point", key="hr", formula=~OBS+HAS,
truncation=82.5)

summary(hr.model2)

Try fitting other possible formula and decide which model is best in terms of AIC.

Plotting the detection functions

The detection functions can be investigated using the plot function as shown below. A few
different plotting options are illustrated.
# Plot simple model
plot(hr.model0, nc=20, main="Simple model", pch=20)

# Plot model with OBS
plot(hr.model1, nc=10, main="Model with OBS", pch=1, pl.col=2)

What does the detection function look like for your selected model?

To see more sophisticated examples of plotting the detection function for the selected model,
see the code accompanying Buckland et al. (2015) Hawaiian Amakihi case study.
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