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1.5 More complicated analyses

This practical is based on the Montrave songbird case study in Buckland et al. (2015), Chapter
5 with computer code under ’Montrave songbird case study. Both point and line transect
surveys were conducted and here we use the data from the line transect data, although the
issues (and solutions) will be similar for both.

These data are provided in a ‘flat file’ format (i.e. it contains all the necessary columns to
estimate a detection function, density and abundance) rather than having separate files for
detections, transects, regions (as in Practical 2). While both formats are equally valid, the
‘flat file’ approach has a particular idiosyncrasy which we exploit here to introduce more
functions and data manipulation.

Several species of birds were identified but not all species were detected on all transects. If
a simple data selection is performed to select records for a particular species, then not all
of the transects will be included in the resulting data (because that species may not have
been seen). This doesn’t matter if we are only interested in fitting detection functions, but
will matter if we wish to estimate density and abundance because the effort will be too low
since some of the transects are missing. To correct for this, some data frame manipulation is
required. There is generally more than one way to do something in R - for an alternative
way see the computer code ‘Montrave song bird case study’ associated with Buckland et al.
(2015).

Objectives of the practical

1. Data frame selection and manipulation

2. Extracting estimates from dht object

3. Customising detection function plots

Importing the data

The data is in a ‘flat file’ format and contains the following columns:

• Region.Label - name of study

• Area - size of study region (km2)
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• repeats - number of visits to transect

• Sample.Label - line transect identifier

• Effort - length of transect (km)

• distance - perpendicular distance (m)

• species - species of bird (c=chaffinch, g=great tit, r=robin and w =wren)

• visit - on which visit bird was detected.

Use the following command to import the data and then use the head command to ensure it
has been imported correctly.
# Read in data file
birds <- read.csv("montrave-line.csv", header=T)

To start with, let’s find out a bit about the data.

How many transects are there? The names of all the transect can be listed using:
unique(birds$Sample.Label)

We can easily see that there are 19 transects in total, however, we can check by combining
two commands:
length(unique(birds$Sample.Label))

For now, save the transect labels to a new object as we will use them later on:
# Save the transect labels
tran.lab <- unique(birds$Sample.Label)

The table command is a quick way to determine how many detections there are of each
species:
# Number of detections by species
table(birds$species)

Each of the line transects was visited twice which is not taken into account at present.
However, it is straightforward to do so:
# Account for transects walked twice
birds$Effort <- birds$Effort * birds$repeats

Manipulating the robin data

For the purposes of this practical, we are interested in estimating the density of robins and
so we select only these records:
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# Select robins
robins <- birds[birds$species=="r", ]

Now let’s see how many transects on which robins were detected:
length(unique(robins$Sample.Label))

If we were to use the robins data as it is at present to estimate density, then density would be
underestimated because the search effort associated with three transects is missing. Adding
these missing transects to the robins data, requires several steps:

1. identify the missing transects,

2. select the information for the missing transects,

3. get the missing information in the correct format,

4. add the missing information to the robins data.

The following commands identifies the missing commands. After each command, type the
name of the object which has been created to see what each command has done.
# List of transect labels on which robins were seen
robin.lab <- unique(robins$Sample.Label)

# Transects missing from robin data
miss.lab <- tran.lab[!is.element(el=tran.lab, set=robin.lab)]

To understand what this latter command has done, it can be broken down into several
elements:

• elements of tran.lab are selected using []

• the is.element function (without the ! symbol) selects the elements in tran.lab,
which are also in the set argument (i.e. robin.lab)

• the ! is used to select the elements in tran.lab that are NOT in robin.lab.

Now we know which transects are missing, we can select these records from the birds data
frame:
# Select transects from data
miss.data <- birds[is.element(birds$Sample.Label, miss.lab), ]

However, the information about the transects are repeated in this new data frame because
we have just selected all records for these transects. A quick check of the number of rows will
confirm this:
length(miss.data$Sample.Label)

To get rid of rows where Sample.Label is duplicated use the command:
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# Get rid of duplicated information
miss.data <- miss.data[!duplicated(miss.data$Sample.Label), ]

This command has selected the records from miss.data for which the transect label is not
duplicated.

We only want to keep the information about search effort and so data in the distance,
species and visit columns are set to missing:
# Set distances and species to missing - note use of "" for characters
miss.data$distance <- rep(NA, 3)
miss.data$species <- rep("NA", 3)
miss.data$visit <- rep(NA, 3)

Check what miss.data looks like.

The final thing to do is to add the missing data (miss.data) to the robins data frame using
the rbind function (this combines data frames with the same columns).
# Add missing transect info onto robin data
robins <- rbind(robins, miss.data)

Let’s see the result of all this manipulation:
# See what that has done
tail(robins)

If we wanted to be very tidy, then the data frame could be sorted so that the transect labels
were in order:
# Being very tidy - order by transect
robins <- robins[order(robins$Sample.Label), ]

Analysis

Before we fit any models, have a quick look at the histogram of distances:
hist(robins$distance, breaks=20)

In line with Buckland et al. (2015), three different detection functions are fitted:
# Half normal with hermite poly adjustment
robin.hn.herm <- ds(robins, truncation=95, transect="line", key="hn",

adjustment="herm", convert.units=0.1)

# Uniform with cosine adjustment
robin.uni.cos <- ds(robins, truncation=95, transect="line", key="unif",

adjustment="cos", convert.units=0.1)
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# Hazard rate with simple polynomial adjustment
robin.haz.simp <- ds(robins, truncation=95, transect="line", key="hr",

adjustment="poly", convert.units=0.1)

Examining the dht object

As we have seen in a previous practical, the fitted model object (e.g. robin.uni.cos) is
made up of two parts; the detection function in the ddf part and the estimates in the dht
part. In this section, we look at the dht part.

To list the elements that are contained in dht, use the names function:
names(robin.uni.cos$dht)

Detections were of individual birds and so group size was not included in these data - if it
had been included (in a column called size), then as well as individuals there would have
been elements clusters and Expected.S.

The estimates stored in the individuals object can be listed in a similar manner:
names(robin.uni.cos$dht$individuals)

To collect together the density estimates (and estimates of precision) from all the fitted
models, we can use the following command:
# Collect together results
model.results <- rbind(robin.uni.cos$dht$individuals$D,

robin.haz.simp$dht$individuals$D,
robin.hn.herm$dht$individuals$D)

Type the name of the new object to see how the estimates compare between the different
detection function models.

Goodness of fit

Here we look at goodness of fit test with unequal bin intervals and just consider one of the
fitted models. First we specify the required bin intervals.
# Specify breaks - note irregular spacing
robin.brks <- c(0, 12.5, 22.5, 32.5, 42.5, 52.5, 62.5, 77.5, 95.0)

Perform the tests:
ddf.gof(robin.uni.cos$ddf, breaks=robin.brks)
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Customising the detection function plot

The plot function provides a basic plot of the fitted detection function overlaid onto the
scaled distribution of distances:
plot(robin.uni.cos)

However, the plot can be customised for reporting:
# Plot detection function
plot(robin.uni.cos, showpoints=FALSE, pl.den=10, lwd=2, breaks=robin.brks,

main="Uniform-cosine", xlab="Distance (m)")

The arguments are:

• showpoints - logical indicating whether observed distances are shown

• lwd - line width (1=default)

• pl.den - density of shading of histogram (0=no shading)

For other options see help(plot.ds) (Note plot is a generic function which selects a relevant
type of plot based the the object).
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