
Detection function fitting

Solution 3, Intermediate Distance Sampling workshop, CREEM, 2018

Here is a “solution” for practical 3. As with any data analysis, there is no correct answer, but this shows how
I would approach this analysis.

Much of the text below is as in the exercise itself, so it should be relatively easy to navigate.

Additional text and code is highlighted using boxes like this.

Preamble

First need to load the requisite R libraries
library(rgdal)

Loading required package: sp

rgdal: version: 1.3-4, (SVN revision 766)
Geospatial Data Abstraction Library extensions to R successfully loaded
Loaded GDAL runtime: GDAL 2.2.3, released 2017/11/20
Path to GDAL shared files: C:/Users/louise/Documents/R/win-library/3.5/rgdal/gdal
GDAL binary built with GEOS: TRUE
Loaded PROJ.4 runtime: Rel. 4.9.3, 15 August 2016, [PJ_VERSION: 493]
Path to PROJ.4 shared files: C:/Users/louise/Documents/R/win-library/3.5/rgdal/proj
Linking to sp version: 1.3-1
library(ggplot2)
library(Distance)

Loading required package: mrds

This is mrds 2.2.0
Built: R 3.5.1; ; 2018-08-03 20:22:18 UTC; windows

##
Attaching package: 'Distance'

The following object is masked from 'package:mrds':
##
create.bins
library(knitr)

Load the data

The observation data here has all we need here for fitting a detection function. . .
load("sperm-data.RData")
distdata <- obs

We can check it has the correct format using head:
head(distdata)

1

Survey GroupSize SeaState Distance SightingTime SegmentID
1 en04395 2 3.0 246.0173 2004/06/28 10:22:21 48
2 en04395 2 2.5 1632.3934 2004/06/28 13:18:14 50
3 en04395 1 3.0 2368.9941 2004/06/28 14:13:34 51
4 en04395 1 3.5 244.6977 2004/06/28 15:06:01 52
5 en04395 1 4.0 2081.3468 2004/06/29 10:48:31 56
6 en04395 1 2.4 1149.2632 2004/06/29 14:35:34 59
SightingID coords.x1 coords.x2 distance object Sample.Label size
1 1 -65.636 39.576 246.0173 1 48 2
2 2 -65.648 39.746 1632.3934 2 50 2
3 3 -65.692 39.843 2368.9941 3 51 1
4 4 -65.717 39.967 244.6977 4 52 1
5 5 -65.820 40.279 2081.3468 5 56 1
6 6 -65.938 40.612 1149.2632 6 59 1

The Distance package expects certain column names to be used. Renaming is much easier to do in R than
ArcGIS, so we do it here.
distdata$distance <- distdata$Distance
distdata$object <- distdata$SightingID
distdata$size <- distdata$GroupSize

Let’s see what we did:
head(distdata)

Survey GroupSize SeaState Distance SightingTime SegmentID
1 en04395 2 3.0 246.0173 2004/06/28 10:22:21 48
2 en04395 2 2.5 1632.3934 2004/06/28 13:18:14 50
3 en04395 1 3.0 2368.9941 2004/06/28 14:13:34 51
4 en04395 1 3.5 244.6977 2004/06/28 15:06:01 52
5 en04395 1 4.0 2081.3468 2004/06/29 10:48:31 56
6 en04395 1 2.4 1149.2632 2004/06/29 14:35:34 59
SightingID coords.x1 coords.x2 distance object Sample.Label size
1 1 -65.636 39.576 246.0173 1 48 2
2 2 -65.648 39.746 1632.3934 2 50 2
3 3 -65.692 39.843 2368.9941 3 51 1
4 4 -65.717 39.967 244.6977 4 52 1
5 5 -65.820 40.279 2081.3468 5 56 1
6 6 -65.938 40.612 1149.2632 6 59 1

We now have four “extra” columns.

Exploratory analysis

Before setting off fitting detection functions, let’s look at the relationship of various variables in the data.

Don’t worry too much about understanding the code that generates these plots at the moment.

Distances

Obviously, the most important covariate in a distance sampling analysis is distance itself. We can plot a
histogram of the distances to check that (1) we imported the data correctly and (2) it conforms to the usual
shape for line transect data.

2

hist(distdata$distance, xlab="Distance (m)", main="Distance to sperm whale observations")

Distance to sperm whale observations

Distance (m)

F
re

qu
en

cy

0 2000 4000 6000 8000

0
10

20
30

40
50

Size and distance

We might expect that there will be a relationship between the distance at whcih we see animals and the
size of the groups observed (larger groups are easier to see at larger distances), so let’s plot that to help us
visualise the relationship.
plot of size versus distance and sea state vs distance, linear model and LOESS smoother overlay

put the data into a simple format, only selecting what we need
distplot <- distdata[,c("distance","size","SeaState")]
names(distplot) <- c("Distance", "Size", "Beaufort")
library(reshape2)
"melt" the data to have only three columns (try head(distplot))
distplot <- melt(distplot, id.vars="Distance", value.name="covariate")

make the plot
p <- ggplot(distplot, aes(x=covariate, y=Distance)) +

geom_point() +
facet_wrap(~variable, scale="free") +
geom_smooth(method="loess", se=FALSE) +
geom_smooth(method="lm", se=FALSE) +
labs(x="Covariate value", y="Distance (m)")

print(p)

3

Size Beaufort

2 4 6 8 0 1 2 3 4 5

0

2000

4000

6000

8000

0

2000

4000

6000

8000

Covariate value

D
is

ta
nc

e
(m

)

Distance and sea state

We might also expect that increaing sea state would result in a drop in observations. We can plot histograms
of distance for each sea state level (making the sea state take only values 0,1,2,4,5 for this).
distdata$SeaStateCut <- cut(distdata$SeaState,seq(0,5,by=1), include.lowest=TRUE)
p <- ggplot(distdata) +

geom_histogram(aes(distance)) +
facet_wrap(~SeaStateCut) +
labs(x="Distance (m)", y="Count")

print(p)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

4

(3,4] (4,5]

[0,1] (1,2] (2,3]

0 2000 4000 6000 8000 0 2000 4000 6000 8000

0 2000 4000 6000 8000

0

2

4

6

0

2

4

6

Distance (m)

C
ou

nt

Survey effect

Given we are including data from two different surveys we can also investigate the relationship between
survey and distances observed.
p <- ggplot(distdata) +

geom_histogram(aes(distance)) +
facet_wrap(~Survey) +
labs(x="Distance (m)", y="Count")

print(p)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

5

en04395 GU0403

0 2000 4000 6000 8000 0 2000 4000 6000 8000

0.0

2.5

5.0

7.5

10.0

Distance (m)

C
ou

nt

Fitting detection functions

It’s now time to fit some detection function models. We’ll use the ds() function from the Distance package
to fit the detection function. You can access the help file for the ds() function by typing ?ds – this will give
you information about what the different arguments to the function are and what they do.

We can fit a very simple model with the following code:
df_hn <- ds(data=distdata, truncation=6000, key="hn", adjustment=NULL)

Fitting half-normal key function

Key only model: not constraining for monotonicity.

AIC= 2252.06

No survey area information supplied, only estimating detection function.

Let’s dissect the call and see what each argument means:

• data=distdata: the data to use to fit the model, as we prepared above.
• truncation=6000: set the truncation distance. Here, observations at distances greater than 6000m

will be discarded before fitting the detection function.
• key="hn": the key function to use for the detection function, in this case half-normal (?ds lists the

other options).
• adjustment=NULL: adjustment term series to fit. NULL here means that no adjustments should be fitted

(again ?ds lists all options).

6

Other useful arguments for this practical are:

• formula=: gives the formula to use for the scale parameter. By default it takes the value ~1, meaning
the scale parameter is constant and not a function of covariates.

• order=: specifies the “order” of the adjustments to be used. This is a number (or vector of numbers)
specifying the order of the terms. For example order=2 fits order 2 adjustments, order=c(2,3) will fit
a model with order 2 and 3 adjustments (mathematically, it only makes sense to include order 3 with
order 2). By default the value is NULL which has ds() select the number of adjustments by AIC.

Summaries

We can look at the summary of the fitted detection function using the summary() function:
summary(df_hn)

##
Summary for distance analysis
Number of observations : 132
Distance range : 0 - 6000
##
Model : Half-normal key function
AIC : 2252.06
##
Detection function parameters
Scale coefficient(s):
estimate se
(Intercept) 7.900732 0.07884776
##
Estimate SE CV
Average p 0.5490484 0.03662569 0.06670757
N in covered region 240.4159539 21.32287580 0.08869160

Goodness of fit

Goodness of fit quantile-quantile plot and test results can be accessed using the gof_ds() function:
gof_ds(df_hn)

7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical cdf

F
itt

ed
 c

df

##
Goodness of fit results for ddf object
##
Distance sampling Cramer-von Mises test (unweighted)
Test statistic = 0.396179 p-value = 0.0739475

Note we are ignoring the χ2 test results, as they rely on binning the distances to calculate test statistics
where as Cramer-von Mises and Kolmogorov-Smirnov tests do not (so they have more power).

Plotting

We can plot the models simply using the plot() function:
plot(df_hn)

8

Distance

D
et

ec
tio

n
pr

ob
ab

ili
ty

0 1000 2000 3000 4000 5000 6000

0.
0

0.
4

0.
8

The dots on the plot indicate the distances where observations are. We can remove them (particularly useful
for a model without covariates) using the additional argument showpoints=FALSE (try this out!).

Now you try. . .

Now try fitting a few models and comparing them using AIC. Don’t try to fit all possible models, just try a
selection (say, a hazard-rate, a model with adjustments and a couple with different covariates). You can also
try out changing the truncation distance.

Here’s an example to work from. Some tips before you start:

• You can include as many lines as you like in a given chunk (though you may find it more managable to
separate them up, remembering each time to give the chunk a unique name).

• You can run the current line of code in RStudio by hitting Control+Enter (on Windows/Linux;
Command+Enter on Mac).

• Giving your models informative names will help later on! Here I’m using df_ to indicate that this is a
detection function, then shortened forms of the model form and covariates, separated by underscores,
but use what makes sense to you (and future you!).

df_hr_ss_size <- ds(distdata, truncation=6000, adjustment=NULL, key="hr", formula=~SeaState+size)

Fitting hazard-rate key function

AIC= 2249.327

No survey area information supplied, only estimating detection function.

9

Once you’ve got the hang of writing models and looking at the differences between them, you should move
onto the next section.

Since I wasn’t constrained for time, here we can fit all possible detection function models with half-normal
and hazard-rate functions using each combination of covariates. This is somewhat brute force.

Our covariates size and SeaState might be interesting. . .
table(distdata$SeaState)

##
0 1 1.8 2 2.4 2.5 2.7 2.8 2.9 3 3.1 3.5 3.6 3.7 3.9 4 4.5 5
5 4 7 31 8 10 1 1 4 41 2 6 1 2 2 8 1 3

Oh, yikes, the sea state probably was averaged from multiple observers. . . Let’s chop it up before we start
modelling.
distdata$SeaState <- cut(distdata$SeaState, breaks=0:5, include.lowest=TRUE)
table(distdata$SeaState)

##
[0,1] (1,2] (2,3] (3,4] (4,5]
9 38 65 21 4

You could check for sensitivity in choppings too. . .

We’ll store all the models in a list that we can then iterate over later.
models <- list()

half-normal models
models$hn <- ds(distdata, truncation=6000, adjustment=NULL)

Fitting half-normal key function

Key only model: not constraining for monotonicity.

AIC= 2252.06

No survey area information supplied, only estimating detection function.
models$hn.ss <- ds(distdata, truncation=6000, adjustment=NULL, formula=~SeaState)

Fitting half-normal key function

AIC= 2236.726

No survey area information supplied, only estimating detection function.
models$hn.size <- ds(distdata, truncation=6000, adjustment=NULL, formula=~size)

Fitting half-normal key function

AIC= 2253.892

No survey area information supplied, only estimating detection function.
models$hn.ss.size <- ds(distdata, truncation=6000, adjustment=NULL, formula=~size+SeaState)

Fitting half-normal key function

AIC= 2238.411

No survey area information supplied, only estimating detection function.

10

models$hn.survey <- ds(distdata, truncation=6000, adjustment=NULL, formula=~as.factor(Survey))

Fitting half-normal key function

AIC= 2252.35

No survey area information supplied, only estimating detection function.
models$hn.survey.ss <- ds(distdata, truncation=6000, adjustment=NULL,

formula=~as.factor(Survey)+SeaState)

Fitting half-normal key function

AIC= 2235.885

No survey area information supplied, only estimating detection function.
models$hn.survey.size <- ds(distdata, truncation=6000, adjustment=NULL,

formula=~as.factor(Survey)+size)

Fitting half-normal key function

AIC= 2254.339

No survey area information supplied, only estimating detection function.
models$hn.survey.size.ss <- ds(distdata, truncation=6000, adjustment=NULL,

formula=~as.factor(Survey)+size+SeaState)

Fitting half-normal key function

AIC= 2237.818

No survey area information supplied, only estimating detection function.
hazard-rate models
models$hr <- ds(distdata, truncation=6000, adjustment=NULL, key="hr")

Fitting hazard-rate key function

Key only model: not constraining for monotonicity.

AIC= 2247.594

No survey area information supplied, only estimating detection function.
models$hr.ss <- ds(distdata, truncation=6000, adjustment=NULL, formula=~SeaState, key="hr")

Fitting hazard-rate key function

AIC= 2240.354

No survey area information supplied, only estimating detection function.
models$hr.size <- ds(distdata, truncation=6000, adjustment=NULL, formula=~size, key="hr")

Fitting hazard-rate key function

AIC= 2249.427

No survey area information supplied, only estimating detection function.
models$hr.ss.size <- ds(distdata, truncation=6000, adjustment=NULL, formula=~size+SeaState, key="hr")

Fitting hazard-rate key function

AIC= 2242.175

11

No survey area information supplied, only estimating detection function.
models$hr.survey <- ds(distdata, truncation=6000, adjustment=NULL,

formula=~as.factor(Survey), key="hr")

Fitting hazard-rate key function

AIC= 2248.871

No survey area information supplied, only estimating detection function.
models$hr.survey.ss <- ds(distdata, truncation=6000, adjustment=NULL,

formula=~as.factor(Survey)+SeaState, key="hr")

Fitting hazard-rate key function

AIC= 2241.45

No survey area information supplied, only estimating detection function.
models$hr.survey.size <- ds(distdata, truncation=6000, adjustment=NULL,

formula=~as.factor(Survey)+size, key="hr")

Fitting hazard-rate key function

AIC= 2250.146

No survey area information supplied, only estimating detection function.
models$hr.survey.size.ss <- ds(distdata, truncation=6000, adjustment=NULL,

formula=~as.factor(Survey)+size+SeaState, key="hr")

Fitting hazard-rate key function

AIC= 2243.434

No survey area information supplied, only estimating detection function.

Phew!

Model selection

Looking at the models individually can be a bit unwieldy – it’s nicer to put that data into a table and sort
the table by the relevant statistic.

The code below will make a results table with relevant statistics for model selection in it. Don’t worry about
how this code exactly works at the moment.
make_table <- function(models){

this function extracts the model data for a single model (row)
extract_model_data <- function(model){

c(summary(model)dskey,
modelddfdsauxddfobj$scale$formula,
modelddfcriterion,
ddf.gof(model$ddf, qq=FALSE)$dsgofCvMp,
summary(model)dsaverage.p,
summary(model)dsaverage.p.se

)
}

12

applying that to all the models then putting it into a data.frame
res <- as.data.frame(t(as.data.frame(lapply(models, extract_model_data))),

stringsAsFactors=FALSE)

making sure the correct columns are numeric
res[,3] <- as.numeric(res[,3])
res[,4] <- as.numeric(res[,4])
res[,5] <- as.numeric(res[,5])
res[,6] <- as.numeric(res[,6])

giving the columns names
colnames(res) <- c("Key", "Formula", "AIC", "CvMises p-value",

"$\\hat{P_a}$", "se($\\hat{P_a}$)")

creating a new column for the AIC difference to the best model
res[["$\\Delta$AIC"]] <- res$AIC - min(res$AIC, na.rm=TRUE)
ordering the model by AIC score
res <- res[order(res$AIC),]

returning the data.frame
return(res)

}

The make_table() function expects a list of models as it’s input. We can do that with the two models
that I fitted like so:
#models <- list()
#models$df_hn <- df_hn
#models$df_hr_ss_size <- df_hr_ss_size

(You can add the models you fitted above into this list.)

We already have everything in a list from the above, so we comment out the above.

Here is the resulting table from the code above, made using the kable function from knitr:
model_table <- make_table(models)
kable(model_table, digits=3)

Key Formula AIC CvMises p-value P̂a se(P̂a) ∆AIC
hn.survey.ss hn ~as.factor(Survey) + SeaState 2235.885 0.355 0.461 0.049 0.000
hn.ss hn ~SeaState 2236.726 0.334 0.463 0.052 0.841
hn.survey.size.ss hn ~as.factor(Survey) + size + SeaState 2237.818 0.354 0.461 0.049 1.933
hn.ss.size hn ~size + SeaState 2238.411 0.344 0.462 0.051 2.526
hr.ss hr ~SeaState 2240.354 0.905 0.365 0.091 4.469
hr.survey.ss hr ~as.factor(Survey) + SeaState 2241.450 0.945 0.356 0.093 5.565
hr.ss.size hr ~size + SeaState 2242.175 0.889 0.364 0.091 6.290
hr.survey.size.ss hr ~as.factor(Survey) + size + SeaState 2243.434 0.938 0.357 0.093 7.549
hr hr ~1 2247.594 0.904 0.362 0.077 11.709
hr.survey hr ~as.factor(Survey) 2248.871 0.875 0.377 0.076 12.986
hr.size hr ~size 2249.427 0.899 0.355 0.077 13.542
hr.survey.size hr ~as.factor(Survey) + size 2250.146 0.859 0.365 0.076 14.261
hn hn ~1 2252.060 0.074 0.549 0.037 16.175
hn.survey hn ~as.factor(Survey) 2252.350 0.082 0.545 0.036 16.466
hn.size hn ~size 2253.892 0.076 0.549 0.037 18.007
hn.survey.size hn ~as.factor(Survey) + size 2254.339 0.082 0.545 0.037 18.454

13

Key Formula AIC CvMises p-value P̂a se(P̂a) ∆AIC

The four best models are hn.survey.ss, hn.ss, hn.survey.size.ss, hn.ss.size

We can plot the best 4 models:
par(mfrow=c(2,2))
plot(models$hr.ss, main="hr.ss")
plot(models$hr, main="hr")
plot(models$hr.survey.ss, main="hr.survey.ss")
plot(models$hn.ss, main="hn.ss")

Distance

D
et

ec
tio

n
pr

ob
ab

ili
ty

0 2000 4000 6000

0.
0

0.
4

0.
8

hr.ss

Distance

D
et

ec
tio

n
pr

ob
ab

ili
ty

0 2000 4000 6000

0.
0

0.
4

0.
8

hr

Distance

D
et

ec
tio

n
pr

ob
ab

ili
ty

0 2000 4000 6000

0.
0

0.
4

0.
8

hr.survey.ss

Distance

D
et

ec
tio

n
pr

ob
ab

ili
ty

0 2000 4000 6000

0.
0

0.
4

0.
8

hn.ss

and produce the corresponding quantile-quantile plots and goodness of fit test results
par(mfrow=c(2,2))
gof_ds(models$hr.ss, main="hr.ss")
gof_ds(models$hr, main="hr")

14

gof_ds(models$hr.survey.ss, main="hr.survey.ss")
gof_ds(models$hn.ss, main="hn.ss")

−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

hr.ss

Empirical cdf

F
itt

ed
 c

df

−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

hr

Empirical cdf
F

itt
ed

 c
df

−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

hr.survey.ss

Empirical cdf

F
itt

ed
 c

df

−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

hn.ss

Empirical cdf

F
itt

ed
 c

df

(that was a lot of output, we can get rid of that by setting results="hide" in the chunk above).

From that it looks like the “best” mode by AIC and by goodness of fit is a hazard-rate model with Beaufort
sea state as a covariate. But note that there is a considerable spike in the distance data (see next comment).

A further note about model selection for the sperm whale data

Note that there is a considerable spike in our distance data. This may be down to observers guarding the
trackline (spending too much time searching near zero distance). It’s therefore possible that the hazard-rate
model is overfitting to this peak. So we’d like to investigate results from the half-normal model too and see
what the effects are on the final spatial models.

15

Estimating abundance

Just for fun, let’s estimate abundance from these models using a Horvtiz-Thompson-type estimator.

We know the Horvitz-Thompson estimator has the following form:

N̂ = A

a

n∑
i=1

si

pi

we can calculate each part of this equation in R:

• A is the total area of the region we want to estimate abundance for. This was A = 5.285e+ 11m2.
• a is the total area we surveyed. We know that the total transect length was 9,498,474m and the

truncation distance. Knowing that then a = 2wL we can calculate a.
• si are the group sizes, they are stored in df_hnddfdata$size.
• pi are the probabilities of detection, we can obtain them using predict(df_hn$ddf)$fitted.

We know that in general operations are vectorised in R, so calculating c(1, 2, 3)/c(4, 5, 6) will give
c(1/4, 2/5, 3/6) so we can just divide the results of getting the si and pi values and then use the sum()
function to sum them up.

Try out estimating abundance using the formula below using both df_hn and your favourite model from
above:

Just trying that out for df_hn:
N_hn <- (5.285e+11/(2*df_hnddfmeta.data$width*9498474)) *

sum(df_hnddfdata$size/predict(df_hn$ddf)$fitted)
N_hn

[1] 2015.82

Save model objects

Save your top few models in an RData file, so we can load them up later on. We’ll also save the distance data
we used to fit out models.
save(df_hn, df_hr_ss_size, models,

distdata,
file="df-models.RData")

You can check it worked by using the load() function to recover the models.

16

	Detection function fitting
	

	Preamble
	Load the data
	Exploratory analysis
	Distances
	Size and distance
	Distance and sea state
	Survey effect

	Fitting detection functions
	Summaries
	Goodness of fit
	Plotting

	Now you try…
	Model selection
	A further note about model selection for the sperm whale data
	Estimating abundance
	Save model objects

