
Advanced density surface models

Practical 5, Intermediate Distance Sampling workshop, CREEM, 2018

Aims

By the end of this practical, you should feel comfortable:

• Fitting DSMs with multiple smooth terms in them
• Selecting smooth terms by p-values
• Using shrinkage smoothers
• Selecting between models using deviance, AIC, REML score
• Investigating concurvity in DSMs with multiple smooths
• Investigating sensitivity sensitivity and path dependence

Load data and packages

library(Distance)

## Loading required package: mrds

## This is mrds 2.2.0
## Built: R 3.5.1; ; 2018-08-03 20:22:18 UTC; windows

##
## Attaching package: 'Distance'

## The following object is masked from 'package:mrds':
##
## create.bins
library(dsm)

## Loading required package: mgcv

## Loading required package: nlme

## This is mgcv 1.8-24. For overview type 'help("mgcv-package")'.

## Loading required package: numDeriv

## This is dsm 2.2.16
## Built: R 3.4.2; ; 2017-11-02 15:05:30 UTC; windows
library(ggplot2)
library(knitr)
library(plyr)
library(reshape2)

Loading the data processed from GIS and the fitted detection function objects from the previous exercises:
load("sperm-data.RData")
load("df-models.RData")

Exploratory analysis

We can do some exploratory analysis by aggregating the counts to each cell and plotting what’s going on.
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Don’t worry about understanding what this code is doing at the moment.
# join the observations onto the segments
join_dat <- join(segs, obs, by="Sample.Label", type="full")
# sum up the observations per segment
n <- ddply(join_dat, .(Sample.Label), summarise, n=sum(size), .drop = FALSE)
# sort the segments by their labsl
segs_eda <- segs[sort(segs$Sample.Label),]
# make a new column for the counts
segs_eda$n <- n$n

# remove the columns we don't need,
segs_eda$CentreTime <- NULL
segs_eda$POINT_X <- NULL
segs_eda$POINT_Y <- NULL
segs_eda$segment.area <- NULL
segs_eda$off.set <- NULL
segs_eda$CenterTime <- NULL
segs_eda$Effort <- NULL
segs_eda$Length <- NULL
segs_eda$SegmentID <- NULL
segs_eda$coords.x1 <- NULL
segs_eda$coords.x2 <- NULL

# "melt" the data so we have four columns:
# Sample.Label, n (number of observations),
# variable (which variable), value (its value)
segs_eda <- melt(segs_eda, id.vars=c("Sample.Label", "n"))
# try head(segs_eda)

Finally, we can plot histograms of counts for different values of the covariates:
p <- ggplot(segs_eda) +

geom_histogram(aes(value, weight=n)) +
facet_wrap(~variable, scale="free") +
xlab("Covariate value") +
ylab("Aggregated counts")

print(p)

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

We can also just plot the counts against the covariates, note the high number of zeros (but still some
interesting patterns):
p <- ggplot(segs_eda) +

geom_point(aes(value, n)) +
facet_wrap(~variable, scale="free") +
xlab("Covariate value") +
ylab("Aggregated counts")

print(p)

## Warning: Removed 6076 rows containing missing values (geom_point).

These plots give a very rough idea of the relationships we can expect in the model. Notably these plots don’t
take into account interactions between the variables and potential correlations between the terms, as well as
detectability.
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Figure 1: Histograms of segment counts at various covariate levels.
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Figure 2: Relationship of segment counts to covariate values.
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Pre-model fitting

As we did in the previous exercise we must remove the observations from the spatial data that we excluded
when we fitted the detection function – those observations at distances greater than the truncation.
obs <- obs[obs$distance <= df_hn$ddf$meta.data$width,]

Here we’ve used the value of the truncation stored in the detection function object, but we could also use the
numeric value (which we can also find by checking the model’s summary()).

Again note that if you want to fit DSMs using detection functions with different truncation distances, then
you’ll need to reload the sperm-data.RData and do the truncation again for that detection function.

Our new friend +

We can build a really big model using + to include all the terms that we want in the model. We can check
what’s available to us by using head() to look at the segment table:
head(segs)

## CenterTime SegmentID Length POINT_X POINT_Y Depth
## 1 2004/06/24 07:27:04 1 10288.91 214544.0 689074.3 118.5027
## 2 2004/06/24 08:08:04 2 10288.91 222654.3 682781.0 119.4853
## 3 2004/06/24 09:03:18 3 10288.91 230279.9 675473.3 177.2779
## 4 2004/06/24 09:51:27 4 10288.91 239328.9 666646.3 527.9562
## 5 2004/06/24 10:25:39 5 10288.91 246686.5 659459.2 602.6378
## 6 2004/06/24 11:00:22 6 10288.91 254307.0 652547.2 1094.4402
## DistToCAS SST EKE NPP coords.x1 coords.x2 x
## 1 14468.1533 15.54390 0.0014442616 1908.129 214544.0 689074.3 214544.0
## 2 10262.9648 15.88358 0.0014198086 1889.540 222654.3 682781.0 222654.3
## 3 6900.9829 16.21920 0.0011704842 1842.057 230279.9 675473.3 230279.9
## 4 1055.4124 16.45468 0.0004101589 1823.942 239328.9 666646.3 239328.9
## 5 1112.6293 16.62554 0.0002553244 1721.949 246686.5 659459.2 246686.5
## 6 707.5795 16.83725 0.0006556266 1400.281 254307.0 652547.2 254307.0
## y Effort Sample.Label
## 1 689074.3 10288.91 1
## 2 682781.0 10288.91 2
## 3 675473.3 10288.91 3
## 4 666646.3 10288.91 4
## 5 659459.2 10288.91 5
## 6 652547.2 10288.91 6

We can then fit a model with the available covariates in it, each as an s() term.
dsm_nb_xy_ms <- dsm(count~s(x,y, bs="ts") +

s(Depth, bs="ts") +
s(DistToCAS, bs="ts") +
s(SST, bs="ts") +
s(EKE, bs="ts") +
s(NPP, bs="ts"),

df_hn, segs, obs,
family=nb())

summary(dsm_nb_xy_ms)

##
## Family: Negative Binomial(0.11)
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## Link function: log
##
## Formula:
## count ~ s(x, y, bs = "ts") + s(Depth, bs = "ts") + s(DistToCAS,
## bs = "ts") + s(SST, bs = "ts") + s(EKE, bs = "ts") + s(NPP,
## bs = "ts") + offset(off.set)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -20.7278 0.2219 -93.41 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## s(x,y) 1.8069778 29 19.155 2.24e-05 ***
## s(Depth) 3.1224156 9 47.384 3.60e-12 ***
## s(DistToCAS) 0.0001369 9 0.000 0.741
## s(SST) 0.0001613 9 0.000 0.517
## s(EKE) 0.8126762 9 5.185 0.011 *
## s(NPP) 0.0001217 9 0.000 0.813
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.093 Deviance explained = 39.1%
## -REML = 276.88 Scale est. = 1 n = 949

Notes:

1. We’re using bs="ts" to use the shrinkage thin plate regression spline. More technical detail on these
smooths can be found on their manual page ?smooth.construct.ts.smooth.spec.

2. We’ve not specified basis complexity (k) at the moment. Note that if you want to specify the same
complexity for multiple terms, it’s often easier to make a variable that can then be given as k (for
example, setting k1<-15 and then setting k=k1 in the required s() terms).

Plot

Let’s plot the smooths from this model:
plot(dsm_nb_xy_ms, pages=1, scale=0)

Notes:

1. Setting shade=TRUE gives prettier confidence bands.
2. As with vis.gam() the response is on the link scale.
3. scale=0 puts each plot on a different y-axis scale, making it easier to see the effects. Setting scale=-1

will put the plots on a common y-axis scale

We can also plot the bivariate smooth of x and y as we did before, using vis.gam():
vis.gam(dsm_nb_xy_ms, view=c("x","y"), plot.type="contour", too.far=0.1,

main="s(x,y) (link scale)", asp=1)

Compare this plot to Figure @ref(fig:nb-xy-visgam), generated in the previous practical when only x and y
were included in the model.
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Figure 3: Smooths for all covariates with neg-binomial response distribution.
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Figure 4: Fitted surface with all environmental covariates, and neg-binomial response distribution.

Check

We can use gam.check() and rqgam.check() to look at the residual check plots for this model.

Do this in the below gaps and comment on the resulting plots and diagnostics.

Looking back through the lecture notes, do you see any problems in these plots or in the text output from
gam.check().

You might decide from the diagnostics that you need to increase k for some of the terms in the model. Do
this and re-run the above code to ensure that the smooths are flexible enough. The ?choose.k manual page
can offer some guidance. Generally if the EDF is close to the value of k you supplied, it’s worth doubling k
and refitting to see what happens. You can always switch back to the smaller k if there is little difference.

Select terms

As was covered in the lectures, we can select terms by (approximate) p-values and by looking for terms that
have EDFs significantly less than 1 (those which have been shrunk).

Decide on a significance level that you’ll use to discard terms in the model. Remove the terms that are
non-significant at this level and re-run the above checks, summaries and plots to see what happens. It’s
helpful to make notes to yourself as you go

It’s easiest to either comment out the terms that are to be removed (using #) or by copying the code chunk
above and pasting it below.

Having removed a smooth and reviewed your model, you may decide you wish to remove another. Follow the
process again, removing a term, looking at plots and diagnostics.
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Compare response distributions

Use the gam.check() to compare quantile-quantile plots between negative binomial and Tweedie distributions
for the response.

Estimated abundance as a response

Again, we’ve only looked at models with count as the response. Try using a detection function with covariates
and the abundance.est response in the chunk below:

Concurvity

Checking concurvity of terms in the model can be accomplished using the concurvity() function.
concurvity(dsm_nb_xy_ms)

## para s(x,y) s(Depth) s(DistToCAS) s(SST) s(EKE)
## worst 4.530024e-23 0.9963493 0.9836597 0.9959057 0.9772853 0.7702479
## observed 4.530024e-23 0.8646807 0.8274429 0.9882052 0.9523370 0.6745515
## estimate 4.530024e-23 0.7580838 0.9272203 0.9642030 0.8978412 0.4906765
## s(NPP)
## worst 0.9727752
## observed 0.9515884
## estimate 0.8694619

By default the function returns a matrix of a measure of concurvity between one of the terms and the rest of
the model.

Compare the output of the models before and after removing terms.

Reading these matrices can be laborious and not very fun. The function vis.concurvity() in the dsm
package is used to visualise the concurvity between terms in a model by colour coding the matrix (and
blanking out the redundant information).

Again compare the results of plotting for models with different terms.

Sensitivity

Compare bivariate and additive spatial effects

If we replace the bivariate smooth of location (s(x, y)) with an additive terms (s(x)+s(y)), we may see a
difference in the final model (different covariates selected).
dsm_nb_x_y_ms <- dsm(count~s(x, bs="ts") +

s(y, bs="ts") +
s(Depth, bs="ts") +
s(DistToCAS, bs="ts") +
s(SST, bs="ts") +
s(EKE, bs="ts") +
s(NPP, bs="ts"),

df_hn, segs, obs,
family=nb())

summary(dsm_nb_x_y_ms)
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##
## Family: Negative Binomial(0.111)
## Link function: log
##
## Formula:
## count ~ s(x, bs = "ts") + s(y, bs = "ts") + s(Depth, bs = "ts") +
## s(DistToCAS, bs = "ts") + s(SST, bs = "ts") + s(EKE, bs = "ts") +
## s(NPP, bs = "ts") + offset(off.set)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -20.7261 0.2199 -94.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## s(x) 5.684e-04 9 0.000 0.3401
## s(y) 3.005e-05 9 0.000 0.6614
## s(Depth) 3.128e+00 9 38.197 1.48e-09 ***
## s(DistToCAS) 6.335e-05 9 0.000 0.4189
## s(SST) 1.225e-04 9 0.000 0.6320
## s(EKE) 8.232e-01 9 5.517 0.0089 **
## s(NPP) 2.537e+00 9 25.751 8.12e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.0918 Deviance explained = 40.3%
## -REML = 277.72 Scale est. = 1 n = 949

Try performing model selection as before from this base model and compare the resulting models.

Compare the resulting smooths from like terms in the model. For example, if depth were selected in both
models, compare EDFs and plots, e.g.:
par(mfrow=c(1,2))
plot(dsm_nb_xy_ms, select=2)
plot(dsm_nb_x_y_ms, select=3)

Note that there select= picks just one term to plot. These are in the order in which the terms occur in the
summary() output (so you may well need to adjust the above code).

Comparing models

As with the detection functions in the earlier exercises, here is a quick function to generate model results
tables with appropriate summary statistics:
summarize_dsm <- function(model){

summ <- summary(model)

data.frame(response = model$family$family,
terms = paste(rownames(summ$s.table), collapse=", "),
AIC = AIC(model),
REML = model$gcv.ubre,
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Figure 5: Shape of depth covariate response with bivariate s(x,y) and univariate s(x)+s(y).
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"Deviance_explained" = paste0(round(summ$dev.expl*100,2),"%")
)

}

We can make a list of the models and pass the list to the above function.
# add your models to this list!
model_list <- list(dsm_nb_x_y_ms, dsm_nb_xy_ms)
library(plyr)
summary_table <- ldply(model_list, summarize_dsm)
row.names(summary_table) <- c("dsm_nb_x_y_ms", "dsm_nb_xy_ms")

summary_table <- summary_table[order(summary_table$REML, decreasing=TRUE),]
kable(summary_table,

caption = "Model performance of s(x,y) and s(x)+s(y) in presence of other covariates.")

Table 1: Model performance of s(x,y) and s(x)+s(y) in presence of
other covariates.

response terms AIC REML Deviance_explained
dsm_nb_x_y_ms Negative Binomial(0.111) s(x), s(y), s(Depth), s(DistToCAS), s(SST), s(EKE), s(NPP) 752.0882 277.7175 40.31%
dsm_nb_xy_ms Negative Binomial(0.11) s(x,y), s(Depth), s(DistToCAS), s(SST), s(EKE), s(NPP) 754.0973 276.8754 39.06%

Saving models

Now save the models that you’d like to use to predict with later. I recommend saving as many models as you
can so you can compare their results in the next practical.
# add your models here
save(dsm_nb_xy_ms, dsm_nb_x_y_ms,

file="dsms.RData")
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