Spatial Capture-Recapture

Scenario

Effective area? – No Problem: bread & butter to Distance Samplers!

This is just MRDS Point Transect Survey

```
Detector
ID 1 2
1 0 1
2 0 0
3 1 1
4 0 1
5 1 1
etc.
```

• ... but with lots of points, (and sometimes counts instead of 0/1 data)

Detection function

Combining across detectors and occasions

1 occasions

Combining across detectors and occasions

10 occasions

 $a = \int p_{\bullet}(\underline{\mathbf{X}}) d\underline{\mathbf{X}}$ is the area effectively sampled by detectors (if animal density constant in space).

Problem: Don't observe distance, only observe capture location

- But locations of captures/non-captures contains information about detection probability and location/distance.
- Like a multiple-point point transect survey with errors in distance estimation.

Observed capture history in 1D

Detection function in 2D

(Can also predict locations after the event)

Can fit Density Surface Models

Can Model Habitat Use

Mist-netting red-eyed vireo

Model	Density	Capture
index	model	model
M1	D.	$hn(\sigma_{\cdot}, h_{0\cdot})$
M2	D(y)	$hn(\sigma_{\cdot}, h_{0\cdot})$
M3	D_y	$hn(\sigma_{\cdot}, h_{0\cdot})$
M4	D.	$hz(\sigma_{\cdot}, h_{0\cdot})$
M5	D(y)	$hz(\sigma_{\cdot}, h_{0\cdot})$
M6	D(y)	$hz(\sigma_{\psi_2},h_{0\cdot})$
M7	D(y)	$hz(\sigma, h_{0\psi_2})$
M8	D(y)	$hz(\sigma_{\cdot}, h_{0\cdot})$
M9	D.	$hz(\sigma_{\cdot}, h_{0y})$
M10	D(y)	$hz(\sigma_y, h_{0.})$
M11	D(y)	$hz(\sigma_{\cdot}, h_{0y})$
M12	D(y)	$hz(\sigma_{\cdot}, h_{0b})$
M13	D_y	$hz(\sigma_{\cdot}, h_{0b})$
M14	D(y)	$hz(\sigma_y, h_{0yb})$
M15	D(y)	$hz(\sigma_y,\ h_{0b})$

Genetically capturing stoats

Photographs: Bruce Warburton

Picture: Murray Efford

Acoustically Surveying Gibbons

Human acoustic detectors

Acoustically Surveying Frogs

Summary

 Mark-recapture with distance detection function (and unknown distance)

R library "secr" on CRAN (Murray Efford)

Also Bayesian software

 R library "ascr" (Ben Stevenson) for acoustic SCR at https://github.com/b-steve/asecr/