Distance Sampling Simulations

Overview

- Why simulate?
- How it works
- Automated survey design
 - Coverage probability
 - Which design?
 - Design trade-offs
- Defining the population
 - Population description
 - Detectability
- Example Simulations

- Surveys are expensive, we want to get them right! *(simulations cheap)*
- Test different survey designs
- Test survey protocols
- Investigate violation of assumptions
- Investigate analysis properties

• I have a fairly long and narrow study region, are edge effects likely to be a problem?

 Generating my equal spaced zig zag design in a convex hull gives better efficiency (less off effort transit time) but is this likely to introduce large amounts of bias due to non uniform coverage probability?

• What is the potential bias in this stratification technique?

- From pilot study trials I know that there can be multiplicative error on recorded distances
- This error has a ~15% CV when collecting data in 3 bins or ~30% CV when attempting to collect exact distances... which is preferable (if we cannot improve accuracy or correct the measurements)?

- We suspect that the current survey design is less than ideal and may be introducing bias but people are reluctant to change...
- Simulate the current situation to get an idea of how bad things could be
- Simulate a new design to show how things could be improved

- I want to do an acoustic survey with two types of detectors.
 - The first records distances as per standard distance sampling requirements (standard detectors).
 - The second only records the presence of a sound (simple nodes).
- How many standard nodes do I need and how should I distribute them?

- I would like to use my data to generate both design (standard distance sampling) and model based (density surface model) estimates of density... which design will work best for my study?
- Hopefully coming soon to DSsim...
- Some example simulations can be found here: <u>https://github.com/DistanceDevelopment/DSsim/wiki</u>

How it works

- Blue rectangles indicate information supplied by the user.
- Green rectangles are objects created by DSsim in the simulation process.
- Orange diamonds indicate the processes carried out by DSsim.

How it works

Assess:

- Bias
- Precision
- CI coverage

Across different designs/scenarios

Automated Survey Design

- Generate random sets of transects according to an algorithm
 - Assess design properties
 - Generate multiple transect sets for simulations

Automated Survey Design

- Coverage Probability
 - Uniform coverage probability, $\pi = 1/3$
 - Even coverage for any given realisation
 - Uniform coverage probability, $\pi = 1/3$
 - Uneven coverage for any given realisation

Which Design?

- **Uniformity** of coverage probability
- **Even-ness** of coverage within any given realisation
- **Overlap** of samplers
- **Cost** of travel between samplers
- Efficiency when density varies within the region

Design Trade-Offs

Population Definition

- True population size?
- Occur as individuals or clusters?
- Covariates which will affect detectability?
- How is the population distributed within the study region?
 - Ideally have a previously fitted density surface
 Otherwise test over a range of plausible distributions

- Distance needs:
 - shape and scale parameters on the natural scale
 - covariate parameters on the log scale

exp(0.268179) = 1.307581

• Golftees project

							0.2001/9/ 1.00/001			
Detection Fct/	Global/Param	eter Estimates	(MCDS)		L				
			(/		•	Detection Fct/Summary (MRDS)			
Effort	: 210.0	000		N I - I						
# samples	: 1			Natur	al		Summary for ds object			
Width	: 4.000	000		Тасаг			Number of observations : 162			
# observati	ons: 162			coolo			Distance verse			
				Scale			Distance range : 0 - 4			
Model							AIC : 428.572			
Half-nor	mal key, k(y)	= Exp(-y**2/((2*s**2))							
					og scale	e 🕴	Detection function:			
s = A(1)	* Exp(fcn(A(2)) + fcn(A(3))	())		- 0		Malf-normal key function			
Paramete:	r A(1) is the	intercept of	the scale para	meter s.						
Paramete	r A(2) is the	coefficient c	of covariate CL	USTER SIZE.			Detertion function narameters			
Parameter A(3) is the coefficient of level of factor covariate SEX.						Scale coefficient (a) ·				
							scale coefficienc(s):			
	Deint		Devenue Graf	05 D			estimate se			
Deremeter	Foint	Standard	Percent Loer.	95 P Confido	ercent		(Intercept) 0.26817900 0.27140001			
Farameter	Estimate	FLLO	or variation	conride	nce incervai		size 0.09314751 0.08176431			
A(1)	2.622	0.8370					sex1 0.69600047 0.29401571			
A(2)	0.9294E-01 4	0.8172E-01								
A(3)	-0.6951	0.2937					Estimate SE CV			
f(0)	0.36330	0.17850E-01	4.91	0.32972	0.40030		Average p 0.6882835 0.05258548 0.07640090			
p	0.68814	0.33810E-01	4.91	0.62454	0.75821		N in covered region 235,3681131 21,00939868 0,08926187			
ESW	2.7525	0.13524	4.91	2.4981	3.0329					

In simulation:

Def	Detectability								
	Detection fun	ction model:	Half-Normal 🗨						
	Define parameters for each stratum								
	Region	Study Area							
	Scale 1.31 Shape								
	cluster size	0.093							
	sex.0 0								
	sex.1	0.696							

(The units for the detection function are 'Meter')

 $\exp(\log(1.307581)+0.696) = 2.622633$

Det	Detectability							
	Detection fun	ction model:	Half-Normal 🗨					
	Define parameters for each stratum							
	Region	Study Area						
	Scale	2.62						
	Shape							
	cluster size	0.093						
	sex.0	-0.696						
	sex.1	0						

(The units for the detection function are 'Meter')

 $\exp(\log(2.622)-0.696) = 1.307265$

Plot: Probability of Detection

Kext Kex

Analysis

- **Data Filter** must specify a right truncation distance
- Model Definition must be either MRDS or MA
 - MRDS for fitting a specific model
 - MA for model selection (Note: MA model definitions require the creation of analyses)

Any questions so far...

Example Simulations

- To bin or not to bin?
 - It is better to collect binned data accurately than attempt to collect exact distances and introduce measurement error!
- Testing pooling robustness in relation to truncation distance.
 - Demonstrating why you shouldn't be scared to truncate distance sampling data
- Comparison of subjective and random designs.
 - How wrong can you go with a subjective design?
 - Comparing zig zag and parallel designs.

To Bin or Not to Bin?

Simulation:

- Generated 999 datasets
- Added multiplicative measurement error
 - Distance = True Distance * R
 - R = (U + 0.5), where U~Beta(θ , θ)¹
 - No error, ~15% CV (θ = 5), ~30% CV (θ = 1)
- Analysed them in difference ways
 - Exact distances, 5 Equal bins, 5 Unequal bins, 3 Equal bins
- Model selection on minimum AIC
 - Half-normal v Hazard rate

¹Marques T. (2004) Predicting and correcting bias caused by measurement error in line transect sampling using multiplicative error models Biometrics **60**:757--763

To Bin or Not to Bin Results

	Exact Distances	5 Equal Bins	5 Unequal Bins	3 Equal Bins
No	-1.16% bias	-1.11% bias	-0.16% bias	-0.19% bias
Error	210 SE	217 SE	221 SE	255 SE
15% CV	0.48% bias	o.5% bias	1.36% bias	1.72%bias
	214 SE	221 SE	221 SE	264 SE
30% CV	6.66% bias	6.61% bias	7.43% bias	8.20% bias
	237 SE	250 SE	262 SE	338 SE

- Rectangular study region
- Systematic parallel transects with a spacing of 1000m

Density Surface with Example Population

- Uniform density surface
- Population size of 200
- 50% male, 50% female

- Half-normal shape for detectability
- Scale parameter of 120 for the females
- Scale parameter of ~540 for the males

```
\exp(\log(120)+1.5) = 537.8
```

- Half-normal shape for detectability
- Scale parameter of 120 for the females
- Scale parameter of ~540 for the males

• DSsim vignette

- Two types of analyses:
 - hn v hr
 - hn ~ sex
- Selection criteria: AIC

Histogram of data from covariate simulation with manually selected candidate truncation distances.

• Results HN v HR:

Truncation	mean n	mean Ñ	mean se	$SD(\hat{N})$	%Bias	RMSE	% CI Coverage
200	66	197	34.27	34.05	-1.32	34.13	97.5
400	102	190	31.06	34.79	-5.13	36.25	87.9
600	128	190	34.04	35.27	-5.24	36.77	81.9
800	144	190	34.31	36.61	-5.10	37.99	77.1
1000	154	184	30.93	39.49	-7.76	42.42	68.1

Example Simulation

Subjective survey design

Random Designs

Survey Region

Coverage probability

Systematic Parallel Design

Equal Spaced Zigzag Design

Simulation

- Generates a realisation of the population based on a fixed N of 1500
- Generates a realisation of the design
 - Different each time for the random designs
 - The same each time for the subjective design
- Simulates the detection process
- Analyses the results
 - Half-normal
 - Hazard-rate
- Repeats a number of times

Practical

- Now attempt the DSsim practical:
 - *R* version subjective design and parallel v zig zag
 - Distance version parallel v zig zag only
- You will need the library shapefiles.