
Introduction to R for Distance

Topic 1: Introduction to R and RStudio

Most users will use a graphical user interface (GUI) to R. While the basic R installation comes with a simple
GUI, here we adopt the use of RStudio, which considerably facilitates an introduction to R by providing
many shortcuts and convenient features which we introduce next.

By default, RStudio has the following layout:

• the R console (left pane)
• scripts, if open (top left pane)
• the workspace objects (top right pane)
• the loaded packages (bottom right pane)
• the created plots (bottom right pane)
• the help files (bottom right pane)
• a file navigator system (bottom right pane)

Note that you can customize the aspect of RStudio (e.g. font size and colours of the smart syntax highlighting
scheme) via Tools|Global options.

You know that R is ready to receive a command when you see the R prompt in the console (on the bottom
left tab by default in RStudio): “>”. If you type a line of code that is not complete, R presents the “+”
character, so that the user knows it expects the conclusion of the current line. Important note: while the
prompt “>” and “+” will be shown in this tutorial’s code, you should not try to add either “>” nor “+” to
the command line: this is something that R does for you and will complain if you try to do it yourself!

Exercise 1.1: R as a Calculator

R is a very powerful calculator! Mathematical functions like sin() and log() and numbers like pi are built
in. Logical statements like ==, >, and != will return TRUE or FALSE. Try some simple maths, say for example
(you need to press enter after each line so that the line is evaluated).
4 + 3
5 == 2
log(8)
sin(pi)

Task 1.1.1: St Andrews was founded in 1413. How old is the university? Is the university more than 500
years old?

Task 1.1.2: What is the sum of 5! and the natural log of 38?

Task 1.1.3: Calculate the square root of 29340 (hint: there is a function called sqrt()).

Task 1.1.4: What is the product of 12 and 74 divided by 8 plus 7?

Task 1.1.5: What is the area of a circle with a radius of 23 km?

Exercise 1.2: Saving and running code from scripts

So far, we’ve been typing commands directly into the console. Most of the time, you will write code in a
script file and then execute it. Working with script files rather than typing code directly into the console is a
key part of reproducibility when using R: the script file allows you to keep track of what you’ve done, and to
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re-run analyses as needed. Script files have the extension .R. You can add comments to your script file using
#, which basically tells R to ignore whatever follows on the same line. For example:
# this is a comment

3 + 5 # this is also a comment

# 3 + 5 + 8 this is also a comment

# each line of a comment
# needs its own #

Code can be run from your script file by copy-pasting, using the “Run” button at the top right of the script
window, or using keyboard shortcuts: Command+Enter for Macs and Ctrl+Enter for Windows. Note that
other keyboard shortcuts can be found under Tools|Keyboard Shortcuts Help.

Task 1.2.1: Open a script file and save it on your computer. Repeat the tasks from Exercise 1.1, but this
time, type the code in the script file then send it to the console. Add comments to the script file describing
what the code does.

Exercise 1.3: Assignments and operations using variables

Variables store values or objects so that they can be accessed later. In R, we use <- to assign values or objects
to variables and = to set function arguments. For logical tests, as mentioned before, we use ==. The shortcut
for <- in R is alt-.

Create a variable called x and and assign to it the value 5.
x <- 5 # this is pronounced "x gets 5"

When you execute this line of code, nothing happens in the console. That’s a good thing! the > symbol
appears on the next line, indicating that R has completed your request and is ready for the next instruction.

Now, look in the Environment pane of your RStudio session. You can see that the variable x now exists in
your R Environment and it has a value of 5. You can also see this by typing ls() into your console, which
shows you all of the variables in your R Environment.

Type x into your console, then try a few operations on the variable x.
x

x*2

x == 10

Task 1.3.1: Translate the statement “y gets 10” to code. Verify that y exists in your R Environment. Then,
add, subtract, multiply, and divide x and y and store the results as new variables.

To create variables with length greater than 1, we use the function c() which combines or concatenates
objects.
z <- c(1, 2, 3)

Now, we should see the variable z in our Environment pane and/or when we call ls(). Whereas x and y
contain single values, z is a numeric vector of length three. You can see this in the Environment pane or by
checking the structure of z with str(z).

You can find out what different functions do using ? or searching in the Help pane of RStudio. For example,
to find out what ls() does type ?ls() into the console.
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Task 1.3.2: There are two functions that can help you to create sequences of numbers: the colon operator :
and the function seq(). Find the help pages for these functions and use them to create variables called a
and b that contain sequences of numbers from 1 to 10 by one and 1 to 100 by ten, respectively. Are a and b
the same length?

Task 1.3.3: R performs operations element-wise. To understand this concept, try the following operations
with variables that we have already created and note what happens in each case. Which operations cause a
warning message to appear and why?

Task 1.3.4: Another useful function is rep(). Read the help file for this function, and note the arguments
times, length.out, and each. Create three vectors: j should contain the numbers 1 to 5 repeated three
times, k should contain the numbers 1 to 5 repeated three times each, and l should contain the numbers 1 to
5 repeated and have length 15. Which two resulting vectors are the same?

Task 1.3.5: Use the remove function rm() to remove all objects from the Environment.

Topic 2: Data Types and Formats

Objects can have classes, which allow functions to interact with them. Objects can be of several classes.
We already used the class numeric, which is used for general numbers, but there are also additional very
commonly used classes

• integer, for integer numbers
• character, for character strings, which must be in quotes
• factor, used to represent levels of a categorical variable
• logical, the values TRUE and FALSE

While many others exist, these are the more commonly used. Outputs of some analyses have special classes,
as an example, the output of a call of function lm() is an object of class lm, i.e., a linear model. Typically,
functions behave differently according to the class of an object. As an example, note how summary() treats
differently an object of class factor or one of class numeric, producing a table of counts per level for a factor
but a 6 number summary for numeric values.
obj1 <- factor(c(rep("a", 12), rep("b", 4), rep("c", 2)))

summary(obj1)

obj2 <- c(2, 5, -0.2, 89, 12, -3, -5.4)

summary(obj2)

We can check the class of an object using function class, as in the following examples
class(obj1)

class(obj2)

class(TRUE)

It is sometimes useful to coerce objects into different classes, but care should be used when doing so. Some
examples are presented below. Can you describe in your own words what R did below?
as.integer(c(3, -0.3, 0.4, 0.6, 0.9, 13.2, 12))

as.numeric(c(TRUE, FALSE, TRUE))

as.numeric(obj1)
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So far, we’ve been working exclusively with objects called vectors. Vectors are one-dimensional and can have
a length of one or more than one. For more complex data, we can use matrices, data frames, and lists to
store information in multiple dimensions.

• A matrix is a collection of elements of the same data type (numeric, character, or logical) arranged in a
fixed number of rows and columns. An array is an n-dimensional matrix.

• A data frame has variables as columns and observations as rows and can contain multiple data types.

• A list can contain different kinds of objects (data frames, matrices, vectors, etc.) with different
dimensions.

Exercise 2.1: Creating different types of arrays

Task 2.1.1: Use the matrix() function to create a matrix of the numbers 1 to 100 in ten rows and ten
columns. Can you get the numbers to read from left to right instead of from top to bottom?

Task 2.1.2: You just got back from a whale survey and saw 5 fin, 2 blue, 14 humpback, 0 minke, and 1 gray
whale. Use the data.frame() function to create a data frame of this information. Check the structure of the
data frame. What would happen if you stored this data as a matrix instead?

Task 2.1.3: Use the list() function to create an object containing your name, your matrix of numbers
from 1:100, and your data frame of whale sightings.

Exercise 2.2: Indexing and subsetting arrays

To index or extract information from an object, we use square brackets: []. For example, we can select the
third element of a vector
x <- c(1, 3.5, 7, 8, -7, 0.43, -1)

x[3]

but we can also select all except the second and third elements of the same vector
x[-c(2,3)]

We can also select only the objects which follow a given condition, say only those that are positive
x[x > 0]

or those between (-1,1)
x[(x > -1) & (x < 1)]

When working on a matrix the indexing is done by row and column, therefore for selecting the value that is
in the third row and second column of a matrix we use
mat[3, 2]

but we can also select all the elements in the second row
mat[2,]

or the fourth column
mat[,4]

but note that if we provide a single value, like mat[2] R will extract the 2nd element of the matrix column-wise:
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mat[2]

You can use the same type of row-column indexing for data frames, or you can extract information using the
name of the column you’re interested in and the dollar sign operator $.
df <- data.frame("Type" = c("a", "b", "c"),

"Count" = c(83, 74, 31))

df[2, 2]

df$Count[2]

Task 2.2.1: What was the maximum number of whales of a species seen during the whale survey and which
species were they? Did you see zero of any species? Which?

Task 2.2.2: Extract the whale species names from the object my.list that you created in 2.1.3.

Exercise 2.3: Operations on arrays

Task 2.3.1: Use the head() function to look at the built-in dataset ToothGrowth. What is the mean length
of all guinea pig teeth? The standard deviation? What is the mean length of teeth of guinea pigs given a
dose of 1 mg/day?

Task 2.3.2: Use the subset() function to extract the data pertaining to guinea pigs treated with orange
juice. How else could you extract this information?

Task 2.3.3: You find an additional record from this experiment from a guinea pig treated with 2 mg of
Vitamin C a day, given via orange juice, that had a tooth length of 20.3. Add this information to the
ToothGrowth data frame. Use the function nrow() to determine how many records are in your updated data
frame.

Task 2.3.4: Add a column of tooth length divided by dose to ToothGrowth. Round this new data to the
nearest integer.

Topic 3: Using R in Context

Exercise 3.1: Setting up a project directory

Typically, when we’re working on projects, we’ll be working with several different types of files: raw data,
R scripts, figures, and perhaps manuscripts and presentations. It’s good practice to keep all of the files
associated with a project in a single, organized directory. RStudio offers R Projects, which make it easier to
associate files and folders with your R scripts.

Task 3.1.1: Create an R Project folder.

• First, somewhere on your computer, create a folder called “IntroR” or something similar.

• Within that folder, create folders for Data, Scripts, and Figures.

• Then, click File|New Project... within RStudio, and choose “Existing Directory”
• Navigate to the IntroR folder you created above and create your new project
• Open a new R script and save it to the Scripts folder you’ve created within your project directory
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Exercise 3.2: Reading data in and out

Rather than importing data into R manually, typically the data we work with are imported from some
external source. Typically this might be some simple file format, like a txt or a csv file, but while not covered
here, direct import from say Excel files or Access data bases is possible. Such more specialized inputs often
require additional packages.

RStudio includes a useful dedicated shortcut “Import dataset”, by default available through the top right
window of RStudio’s interface. Note this shortcut essentially just calls the appropriate functions required for
each import. Here we present a couple of examples using the dataset iris.
str(iris)

summary(iris)

Now we create a new data frame which we then modify to include a new variable
mydata <- iris
mydata$total <- mydata$Sepal.Length + mydata$Sepal.Width + mydata$Petal.Length + mydata$Petal.Width

Now, we are going to export this data set as a txt, named mydatafile.txt. First, use getwd() to check
which working directory you are in (it should be the directory associated with your R project).
write.table(mydata, file = "./Data/mydatafile.txt", row.names = FALSE)

Note the use of the optional argument row.names=FALSE, otherwise some arbitrary row names would be
added to the file. If you look in the folder you are working in, you should now have a new file there. Open it
and check that it looks as you would expect. Next, we are going to import it back into R, into an object
named indat.

We can now remove mydata from our workspace, then read it back in from the file.
rm(mydata)

indat <- read.table(file = "./Data/mydatafile.txt", header = TRUE)

So now we have our data back in R.

Task 3.2.1: Put the file monthly_in_situ_co2_mlo.csv in your Data folder. Use the function read.csv()
to import the data. Replace any missing values with NA. Use the save() function to save the modified
data as an .RData file. Remove the data from your workspace, then use the load() function to reload it
from the .RData file. Use the unique() and length() functions to find the number of years included in this
timeseries.

Exercise 3.3: Using functions from packages

So far, all of the functions we’ve used have been available in base R. But often, we’ll want to use functions
from specialized packages (like Distance!). A package is just a set of functions and data sets (and the
corresponding documentation plus some additional required files) which usually have some specific goal.

Installing a new package in R requires a call to function install.packages(). A RStudio shortcut is simply
to follow the Tools|Install packages... shortcut.

After a package is installed it needs to be loaded to be available. In R this is done calling function library()
with the package name as an argument. In RStudio this becomes simpler by checking the boxes under the
RStudio tab packages (by default this tab is available on the bottom right window, along with the Files,
Plots, Help and Viewer tabs).

Task 3.3.1: Install and load the maps package. Use the map function to plot a world map.
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Task 3.3.2: Install and load the Distance package. Look at the help for the function ds(). What are the
function arguments? Now run the first chunk of example code. Can you explain what this code is doing?

Topic 4: Control Structures

Exercise 4.1: Conditional Statements

Conditional statements are constructed using if and else. In pseudocode, they have the structure:
# if(logical test here){
# instruction for what to do if logical test is true
# } else {
# thing to do if the logical test is false
#}

Here is a simple example of using the if-else construct:
a <- 5

if(a < 0){
print("a is negative")

} else {
print("a is positive")

}

You can extend this construct to include a series of tests:
a <- 0

if(a < 0){
print("a is negative")

} else if (a == 0){
print("a is zero")

} else {
print("a is positive")

}

Task 4.1.1: Use the function rbinom() to generate the outcome of a single binomial trial with probability
0.5 (i.e., a coin flip). Write an if-else statement that prints “HEADS” when the outcome is 1 and “TAILS”
when the outcome is 0.

Exercise 4.2: For Loops

For loops are a mechanism for iteration. Here is a very simple example:
for(i in 1:10){

print(i)
}

Here is another:
x <- 25:35

for(i in 1:10){
print(x[i])

}
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Task 4.2.1: Modify the above examples to loop over values of i from 1 to 10. In each iteration, calculate
the factorial of i and store it in the ith position of a new vector. How could you make the same calculations
without using a for loop?

Task 4.2.2: A Fibonacci Series is a series of numbers in which each number is the sum of the two preceding
numbers (i.e., 1, 1, 2, 3, 5, 8 . . . ). Write a for loop to generate a Fibonacci Series of any length.

It may be helpful to break down this task into the following steps:
1. create a variable N to store the length of the series, using N = 10 as an example
2. initialize a vector in which to store your series
3. set the first two values of the vectors to 1
4. write a loop that begins with i = 3 and ends with i = N

Bonus: Add a conditional statement to your for loop that sets positions 1 and 2 equal to 1 automatically.
Modify the loop to iterate from 1:N.

Topic 5: Basic Functions

Exercise 5.1: Writing your own functions

If you will repeat a process often, it is worthwhile to write a function to do it. Functions in R have the syntax:
myfunction <- function(arg1, arg2, etc.){

statements
return(object)

}

Where myfunction is the name of the function, arg1 and arg2 are arguments you will pass to the function,
statements are the operations you will perform on those arguments, and object is the object that you want
to get out of your function.

Task 5.1.1: Write a function to calculate the mean of a vector.

Task 5.1.2: Earlier, we wrote a for loop to generate a Fibonacci sequence. Now, write a function that takes
length as an argument and returns a Fibonacci sequence of length = length.

Exercise 5.2: Sourcing functions from scripts

As you begin to do more complex analyses, it will make sense to write functions, save them in their own
scripts, and then source() them from whatever script you are working in. This way, you can use a custom
function in multiple analyses without copy-pasting the code, which helps prevent errors and version control
issues from creeping in.

Task 5.2.1: Store your Fibonacci sequence generating function in its own script file. Modify the function
script to plot the Fibonacci sequence (i.e., include plot(out) after the for loop). Source the script and run
the function with length = 10.

Topic 6: Basic Plots

Exercise 6.1: Scatterplots, Line Plots, Boxplots

The most basic plots in R are scatterplots, created using the plot() function.
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x <- 1:10
y <- rnorm(10, 10, 1)

plot(x, y)

This function has arguments that can be used to e.g., include axis labels, change the colors of the points:
plot(x, y,

xlab = "My X Variable", ylab = "My Y Variable",
pch = 19, col = "blue")

Task 6.1.1: Create a scatterplot of sepal length vs. sepal width, using the iris dataset. Change the points
to be red triangles (hint: look at ?pch). Change the axis titles to something sensible, and change the axes to
so the origin of the plot is at 0, 0. Add an (arbitrary) diagonal line that goes through the data points (hint:
look at ?abline.

The plot function is, as we have seen before for function summary(), a function that attempts to do something
smart depending on the type of arguments used. Using the data set iris previously considered, plot examples
are implemented below, with some optional arguments being used to show some of the possibilities to
customize plots.
plot(iris$Sepal.Length)

We now add some labels to a boxplot of sepal length as a function of species. This can be done using either
the plot() function or boxplot() function.
plot(iris$Species, iris$Sepal.Length,

ylab="Sepal Length (in mm)",
main="Sepal length by species")

boxplot(Sepal.Length ~ Species, data = iris,
ylab="Sepal Length (in mm)",
main="Sepal length by species")

We can also set the graphic window to hold multiple plots. This is done with the argument mfrow, one of the
arguments in function par. An example follows, in which we leverage on the use of function with to avoid
having to constantly use indat$ to tell R where the data can be found.
#define two rows and 2 columns of plots
par(mfrow=c(3,2))
with(iris, hist(Sepal.Length, main=""))
with(iris, hist(Sepal.Width, main=""))
with(iris, hist(Petal.Length, main=""))
with(iris, hist(Petal.Width, main=""))
with(iris, plot(Petal.Length, Petal.Width, pch=21, col=12, bg=3))
with(iris, plot(Sepal.Length, Sepal.Width, pch=16, col=3))

Looking at the help for function par gives you an insight to the level of customization one can reach with
respect to these graphical parameters, via dozens of different arguments.

We can look at the correlation structure between all variables using function pairs().
par(mfrow=c(1,1))
pairs(iris)

Task 6.1.2: Using data cars, create a plot that represents the stopping distances as a function of the speed
of cars. Use the points function to add a special symbol to points corresponding to cars with speed lower
than 15 mph, but distance larger than 70m. Check out the function text to add text annotations to plots.
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Customize axis labels.

Exercise 6.2: Histograms

A histogram is a type of plot where data are binned and the number of data in each bin are counted. In
R, the function hist() computes the histogram and plots it. The stored histogram object contains useful
information about the breakpoints and counts:
h <- hist(cars$speed)

h$counts

Task 6.2.1: Generate 100 random normal deviates with mean = 0 and sd = 2. Use the abs() function to
make all of the deviates positive. Plot the deviates using a histogram with breakpoints at 0, 1, 2, etc. Add a
vertical line at x = 5.

Exercise 6.3: Saving plots

You can save plots using the Export button in the plot pane of RStudio, or you can write code to save plots.
The latter is preferable if you want to make sure your code is reproducible, but we’ll demonstrate it both
ways.
pdf(file = "./Figures/DemoHist.pdf", width = 6, height = 4) # open the device

hist(xpos, breaks = seq(0, xmax, by = 1))
abline(v = 5)

dev.off() # close the device

Exercise 6.4: ggplot

In the Distance workshops and elsewhere, you may see plots created using ggplot2. This package is part
of the tidyverse family of packages and uses a different syntax than base R. We don’t have time to go into
depth about ggplot2, but have included a few examples of plots created with ggplot2 so you can see what
they look like.

A few things to keep in mind about ggplot:

• Data must be contained within a data frame and in “long” format, so that one row = one observation.

• Order matters. Each layer is added on top of the previous layers.

• Data assigned in the first call to ggplot are globally available to all layers.

• Properties (like color or size) that depend on a variable in the data frame must be mapped to that
variable within an aes() statement.

Here is a simple example:
library(ggplot2)

df <- data.frame(x = 1:10, y = 1:10)

ggplot(data = df, aes(x = x, y = y)) +
geom_point(color = "red") +
geom_line()
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ggplot plots can be built up to be more and more complex by adding additional layers and arguments. Here,
we start with a simple boxplot of supplement vs. tooth length using the ToothGrowth dataset:
ggplot(data = ToothGrowth, aes(x = supp, y = len)) +

geom_boxplot()

Then, we can build on this plot to specify colors, labels, etc.:
ggplot(ToothGrowth, aes(x = supp, y = len, fill = supp)) + # color fill is mapped to supp

geom_boxplot() +
xlab("Supplement")+
ylab("Tooth Length")+
ggtitle("Guinea Pig Tooth Growth")+
scale_fill_manual(values = c("lightblue", "darkseagreen4")) + # specify colors
scale_x_discrete(labels = c("Orange Juice", "Ascorbic Acid")) + # change labels
theme_bw()+ # get rid of the gray background
theme(legend.position="none") # get rid of the legend

In ggplot, histograms are created using geom_histogram. Here is a comparison of a base R plot and a ggplot
of the same simulated distance dataset:
df <- data.frame(obs = 1:100,

dist = abs(rnorm(100, 0, 1)))

hist(df$dist)

ggplot(df, aes(x = dist)) +
geom_histogram()

Topic 7: Intro to Stats in R

There are many, many statistical tests built in to R and to R packages. Here, we will show a few basic
examples of using statistical tests and of fitting models and reviewing model results.

Exercise 7.1: T-Test

Task 7.1.1: Use the rnorm() function to generate two vectors of 100 numbers with means and standard
deviations of your choice. Then, use the t.test() function to determine whether the means of your two
vectors are significantly different. What is the p-value of your t-test?

Exercise 7.2: Linear Model

One of the most common type of data analysis is a regression model. Despite being conceptually simple, it is
a very powerful way to understand which (and how) of a number of candidate variables, sometimes referred
to covariates, independent or explanatory variables, might influence a dependent variable, also often referred
as the response. There are many flavours of regression models, from a simple linear regression to complicated
generalized additive mixed models. We do not wish to present these in any detail, but to introduce you to
some functions that implement these models and the syntax that R uses to describe them.

Let’s start with the basics. You have used the cars data set above. We use it here again to try to explain
the distance a car takes to stop as a function of its speed. We start with a linear model using function lm():
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data(cars)

mylm1 <- lm(dist ~ speed, data = cars)

We have stored the result of fitting the model in object mylm1. The function summary() can be used to print
a summary of the fit:
summary(mylm1)

Don’t be frightened by all of the output. The coefficient associated with speed tells us what intuition alone
would anticipate: the higher the speed, the larger the distance a car takes to stop. The easier way to see the
relationship is by adding a line to the plot (note this is a similar plot to what you should have created in task
3 above!).
xl <- "Speed (mph)"

yl <- "Distance (m)"

plot(cars$speed, cars$dist,
xlab = xl, ylab = yl,
ylim = c(0, 120), xlim = c(0, 30))

abline(mylm1)

Note how function abline() is used with a linear model as its first argument and it uses the parameters in
said object to add a line to the plot. The optional arguments v and h are often very useful to draw vertical
and horizontal lines in plots.

Task 7.2.1: Use abline to draw dashed lines (tip, use optional argument lty=2) representing the estimated
distance that a car moving at 16 mph would take to stop.

Note that the line added to the plot represents the distance a car would take to stop given its speed. Oddly
enough, it seems like a car going at 3 mph might take a negative time to stop, which is just plain nonsense.
Why? Because we used a model which does not respect the features of the data. A stopping distance can
not be negative. However, implicit in the linear model we used, distance is a Gaussian (=normal) random
variable. We can avoid this by using a generalized linear model (GLM). Now the response can have a range
of distributions. An example of such distribution that takes only positive values is the gamma distribution.
We implement a gamma GLM next.

Exercise 7.3: Genearlized Linear Model

#fit the glm
myglm1 <- glm(dist ~ speed, data = cars, family = Gamma(link = log))

To generate model predictions, we can use the function predict() or predict.glm(). As indicated in the
help file, it is possible to simply predict over the original values of the covariates using predict(myglm1).
By default, the predictions are given on the scale of the link function; if we want to see predictions on the
scale of the response we can include the argument type = "response". We can supply the model with novel
sets of covariates over which to predict. For example, the dataset didn’t include any observations of cars at a
speed of 5. If we wanted to know the predicted stopping distance at a speed of 5, we could use:
predict.glm(myglm1,

newdata = data.frame(speed = 5),
type = "response")
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Notice that although we only want to know the predicted distance for a single speed, we still need to provide
that speed within a data frame. This makes more sense when predicting over larger sets of covariates, for
example, predicting for speeds from 1 to 30:
predmyglm1 <- predict.glm(myglm1,

newdata = data.frame(speed = 1:30),
type = "response")

Our model now assumes the response has a gamma distribution, and the link function is the logarithm. The
link function allows you to change how the mean value is related to the covariates. This becomes rather
technical rather fast. Details about GLMs are naturally beyond the scope of this tutorial.
#create a plot
plot(cars$speed,cars$dist,

xlab = "Speed (mph)", ylab = "Distance (m)",
ylim = c(0,120), xlim = c(0,30))

#add the linear fit
abline(mylm1)

#and now add the glm predictions
lines(1:30, predmyglm1, col="blue", lwd=3, lty=3)

However, this GLM still requires that the response is linear at some scale (in this case, on the scale of the link
function). Sometimes, non-linear effects are present. These can be fitted using generalized additive models.

Exercise 7.4: Generalized Additive Model

So finally we fit a GAM model to the same data set. For that we require library mgcv. Here the fit is not very
different from the GLM fit, but under many circumstances a GAM might be more appropriate than a GLM
#load the mgcv library
library(mgcv)

#fit the gam
mygam1 <- gam(dist ~ s(speed), data = cars,

family = Gamma(link = log))

#predict using the glm for speeds between 1 and 30
predmygam1 <- predict(mygam1,

newdata = data.frame(speed = 1:30),
type="response")

#create a plot
plot(cars$speed, cars$dist,

xlab = "Speed (mph)", ylab = "Distance (m)",
ylim = c(0, 120), xlim = c(0, 30))

#add the linear fit
abline(mylm1)

#and now add the glm predictions
lines(1:30, predmyglm1, col = "blue", lwd = 3, lty = 3)
lines(1:30, predmygam1, col = "green", lwd = 3, lty = 2)
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Material for this tutorial was contributed by Louise Burt, Jessica Carrière-Garwood, Danielle
Harris, Eiren Jacobson, Tiago Marques, & Len Thomas
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