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Centre for Research into Ecological and Environmental Modelling

Exercise 4. Simple density surface models

Aims

By the end of this practical, you should feel comfortable:

• Fitting a density surface model using dsm()
• Understanding what the objects that go into a dsm() call
• Understanding the role of the response in the formula= argument
• Understanding the output of summary() when called on a dsm object
• Increasing the k parameter of smooth terms to increase their flexibility

The example code below uses the df_hn detection function in the density surface models.
You can substitute this for your own best model as you go, or copy and paste the code at
the end and see what results you get using your model for the detection function.

Load the packages and data

library(Distance)

## Loading required package: mrds

## This is mrds 2.2.1
## Built: R 3.6.1; ; 2019-07-17 13:15:38 UTC; windows

##
## Attaching package: 'Distance'

## The following object is masked from 'package:mrds':
##
## create.bins
library(dsm)

## Loading required package: mgcv

## Loading required package: nlme

## This is mgcv 1.8-28. For overview type 'help("mgcv-package")'.

## Loading required package: numDeriv

## This is dsm 2.2.17
## Built: R 3.6.1; ; 2019-07-11 19:38:05 UTC; windows
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library(ggplot2)
library(knitr)

Loading the RData files where we saved our results:
load("sperm-data.RData")
load("df-models.RData")

Pre-model fitting

Before we fit a model using dsm() we must first remove the observations from the spatial
data that we excluded when we fitted the detection function – those observations at
distances greater than the truncation.
obs <- obs[obs$distance <= df_hn$ddf$meta.data$width, ]

Here we’ve used the value of the truncation stored in the detection function object, but
we could also use the numeric value (which we can also find by checking the model’s
summary()).

Also note that if you want to fit DSMs using detection functions with different truncation
distances, then you’ll need to reload the sperm-data.RData and do the truncation again
for that detection function.

Fitting DSMs

Using the data that we’ve saved so far, we can build a call to the dsm() function and
fit out first density surface model. Here we’re only going to look at models that include
spatial smooths.

Let’s start with a very simple model – a bivariate smooth of x and y:
dsm_nb_xy <- dsm(count~s(x,y),

ddf.obj=df_hn, segment.data = segs, observation.data=obs,
family=nb())

Note again that we try to have informative model object names so that we can work out
what the main features of the model were from its name alone.

We can look at a summary() of this model. Look through the summary output and try to
pick out the important information based on what we’ve talked about in the lectures so
far.
summary(dsm_nb_xy)

##
## Family: Negative Binomial(0.105)
## Link function: log
##
## Formula:
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## count ~ s(x, y) + offset(off.set)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -20.7009 0.2538 -81.56 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## s(x,y) 17.95 22.23 75.89 6.27e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.0879 Deviance explained = 40.6%
## -REML = 392.65 Scale est. = 1 n = 949

Visualising output

As discussed in the lectures, the plot output is not terribly useful for bivariate smooths
like these. We’ll use vis.gam() to visualise the smooth instead:
vis.gam(dsm_nb_xy, view=c("x","y"), plot.type="contour",

too.far=0.1, main="s(x,y) (link scale)", asp=1)

Notes:

1. The plot is on the scale of the link function, the offset is not taken into account –
the contour values do not represent abundance, just the “influence” of the smooth.

2. We set view=c("x","y") to display the smooths for x and y (we can choose any
two variables in our model to display like this)

3. plot.type="contour" gives this “flat” plot, set plot.type="persp" for a “per-
spective” plot, in 3D.

4. The too.far=0.1 argument displays the values of the smooth not “too far” from
the data (try changing this value to see what happens).

5. asp=1 ensures that the aspect ratio of the plot is 1, making the pixels square.
6. Read the ?vis.gam manual page for more information on the plotting options.

Setting basis complexity

We can set the basis complexity via the k argument to the s() term in the formula. For
example the following re-fits the above model with a much smaller basis complexity than
before:
dsm_nb_xy_smallk <- dsm(count~s(x, y, k=10),

ddf.obj=df_hn, segment.data = segs,
observation.data=obs,
family=nb())
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Figure 1: Fitted surface (on link scale) for s(x,y)
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Compare the output of vis.gam() for this model to the model with a larger basis
complexity.

Estimated abundance as response

So far we’ve just used count as the response. That is, we adjusted the offset of the model
to make it take into account the “effective area” of the segments (see lecture notes for a
refresher).

Instead of using count we could use abundance.est, which will leave the segment areas
as they are and calculate the Horvitz-Thompson estimates of the abundance per segment
and use that as the response in the model. This is most useful when we have covariates in
the detection function (though we can use it any time).

Try copying the code that fits the model dsm_nb_xy and make a model dsm_nb_xy_ae that
replaces count for abundance.est in the model formula and uses the df_hr_ss_size
detection function. Compare the results of summary and plot output between this and
the count model.

Univariate models

Instead of fitting a bivariate smooth of x and y using s(x, y), we could instead use the
additive nature and fit the following model:
dsm_nb_x_y <- dsm(count~s(x)+ s(y),

ddf.obj=df_hn, segment.data = segs, observation.data=obs,
family=nb())

Compare this model with dsm_nb_xy using vis.gam() (Note you can display two plots
side-by-side using par(mfrow=c(1,2))). Investigate the output from summary() too,
comparing with the other models, adjust k.

Tweedie response distribution

So far, we’ve used nb() as the response – the negative binomial distribution. We can also
try out the Tweedie distribution as a response by replacing nb() with tw().

Try this out and compare the results.

Save models

It’ll be interesting to see how these models compare to the more complex models we’ll see
later on. Let’s save the fitted models at this stage (add your own models to this list so
you can use them later).
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# add your models here
save(dsm_nb_x_y, dsm_nb_xy,

file="dsms-xy.RData")

Extra credit

If you have time, try the following:

• Make the k value very big (~100 or so), what do you notice?
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