
Advanced topics in distance sampling
Workshop, 26-30 August 2019

Centre for Research into Ecological and Environmental Modelling

Exercise 5. Advanced density surface models

Aims
By the end of this practical, you should feel comfortable:

• Fitting DSMs with multiple smooth terms in them
• Selecting smooth terms by p-values
• Using shrinkage smoothers
• Selecting between models using deviance and AIC
• Investigating concurvity in DSMs with multiple smooths
• Investigating sensitivity sensitivity and path dependence

Load data and packages

library(Distance)

Loading required package: mrds

This is mrds 2.2.1
Built: R 3.5.2; ; 2019-08-19 13:07:30 UTC; unix

##
Attaching package: 'Distance'

The following object is masked from 'package:mrds':
##
create.bins
library(dsm)

Loading required package: mgcv

Loading required package: nlme

This is mgcv 1.8-28. For overview type 'help("mgcv-package")'.

Loading required package: numDeriv

This is dsm 2.2.17
Built: R 3.5.2; ; 2019-01-20 08:22:08 UTC; unix
library(ggplot2)
library(knitr)
library(plyr)
library(reshape2)

1

Load the data processed from GIS and the fitted detection function objects from the
previous exercises:
load("sperm-data.RData")
load("df-models.RData")

Exploratory analysis
We can do some exploratory analysis by aggregating the counts to each cell and plotting
what’s going on.

Don’t worry about understanding what this code is doing at the moment.
join the observations onto the segments
join_dat <- join(segs, obs, by="Sample.Label", type="full")
sum up the observations per segment
n <- ddply(join_dat, .(Sample.Label), summarise, n=sum(size, na.rm=TRUE), .drop = FALSE)
sort the segments by their labsl
segs_eda <- segs[sort(segs$Sample.Label),]
make a new column for the counts
segs_eda$n <- n$n

remove the columns we don't need,
segs_eda$CentreTime <- NULL
segs_eda$POINT_X <- NULL
segs_eda$POINT_Y <- NULL
segs_eda$segment.area <- NULL
segs_eda$off.set <- NULL
segs_eda$CenterTime <- NULL
segs_eda$Effort <- NULL
segs_eda$Length <- NULL
segs_eda$SegmentID <- NULL
segs_eda$coords.x1 <- NULL
segs_eda$coords.x2 <- NULL

"melt" the data so we have four columns:
Sample.Label, n (number of observations),
variable (which variable), value (its value)
segs_eda <- melt(segs_eda, id.vars=c("Sample.Label", "n"))
try head(segs_eda)

Finally, we can plot histograms of counts aggregated for different values of the covariates:
p <- ggplot(segs_eda) +

geom_histogram(aes(value, weight=n)) +
facet_wrap(~variable, scale="free") +
xlab("Covariate value") +
ylab("Aggregated counts")

print(p)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

2

y

EKE NPP x

Depth DistToCAS SST

−4e+05 0e+00 4e+05 8e+05

0.0 0.2 0.4 0.6 500 1000 1500 2000 −4e+05 0e+00 4e+05

0 1000 2000 3000 4000 5000 0e+00 1e+05 2e+05 3e+05 15 20 25 30
0

20

40

60

0

10

20

30

40

0

50

100

0

10

20

30

40

0

10

20

30

40

0

50

100

150

0
10
20
30
40

Covariate value

A
gg

re
ga

te
d

co
un

ts

Figure 1: Histograms of segment counts at various covariate levels.

We can also just plot the counts against the covariates, note the high number of zeros
(but still some interesting patterns):
p <- ggplot(segs_eda) +

geom_point(aes(value, n)) +
facet_wrap(~variable, scale="free") +
xlab("Covariate value") +
ylab("Count")

print(p)

These plots give a very rough idea of the relationships we can expect in the model.
Notably these plots don’t take into account interactions between the variables and
potential correlations between the terms, as well as detectability.

Pre-model fitting
As we did in the previous exercise, we must remove the observations from the spatial
data that we excluded when we fitted the detection function, i.e. those observations at
distances greater than the truncation.
obs <- obs[obs$distance <= df_hn$ddf$meta.data$width,]

Here we used the value of the truncation stored in the detection function object
(df_hn$ddf), but we could also use the numeric value (which we can find by checking the
model’s summary()).

3

y

EKE NPP x

Depth DistToCAS SST

−4e+05 0e+00 4e+05 8e+05

0.0 0.2 0.4 0.6 500 1000 1500 −4e+05 0e+00 4e+05

0 1000 2000 3000 4000 5000 0e+00 1e+05 2e+05 3e+05 15 20 25 30
0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

Covariate value

C
ou

nt

Figure 2: Relationship of segment counts to covariate values.

Again note that if you want to fit DSMs using detection functions with different truncation
distances, then you’ll need to reload the sperm-data.RData and do the truncation again
for that detection function.

Our new friend +

We can build a really big model using + to include all the terms that we want in the
model. We can check what covariates are available to us by using head() to look at the
segment table:
head(segs)

CenterTime SegmentID Length POINT_X POINT_Y Depth
1 2004/06/24 07:27:04 1 10288.91 214544.0 689074.3 118.5027
2 2004/06/24 08:08:04 2 10288.91 222654.3 682781.0 119.4853
3 2004/06/24 09:03:18 3 10288.91 230279.9 675473.3 177.2779
4 2004/06/24 09:51:27 4 10288.91 239328.9 666646.3 527.9562
5 2004/06/24 10:25:39 5 10288.91 246686.5 659459.2 602.6378
6 2004/06/24 11:00:22 6 10288.91 254307.0 652547.2 1094.4402
DistToCAS SST EKE NPP coords.x1 coords.x2 x
1 14468.1533 15.54390 0.0014442616 1908.129 214544.0 689074.3 214544.0
2 10262.9648 15.88358 0.0014198086 1889.540 222654.3 682781.0 222654.3
3 6900.9829 16.21920 0.0011704842 1842.057 230279.9 675473.3 230279.9
4 1055.4124 16.45468 0.0004101589 1823.942 239328.9 666646.3 239328.9

4

5 1112.6293 16.62554 0.0002553244 1721.949 246686.5 659459.2 246686.5
6 707.5795 16.83725 0.0006556266 1400.281 254307.0 652547.2 254307.0
y Effort Sample.Label
1 689074.3 10288.91 1
2 682781.0 10288.91 2
3 675473.3 10288.91 3
4 666646.3 10288.91 4
5 659459.2 10288.91 5
6 652547.2 10288.91 6

We can then fit a model with the available covariates in it, each as an s() term.
dsm_nb_xy_ms <- dsm(count~s(x,y, bs="ts") +

s(Depth, bs="ts") +
s(DistToCAS, bs="ts") +
s(SST, bs="ts") +
s(EKE, bs="ts") +
s(NPP, bs="ts"),

df_hn, segs, obs,
family=nb())

summary(dsm_nb_xy_ms)

##
Family: Negative Binomial(0.114)
Link function: log
##
Formula:
count ~ s(x, y, bs = "ts") + s(Depth, bs = "ts") + s(DistToCAS,
bs = "ts") + s(SST, bs = "ts") + s(EKE, bs = "ts") + s(NPP,
bs = "ts") + offset(off.set)
##
Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -20.7732 0.2295 -90.5 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(x,y) 1.8636924 29 19.141 2.90e-05 ***
s(Depth) 3.4176460 9 46.263 1.65e-11 ***
s(DistToCAS) 0.0000801 9 0.000 0.9053
s(SST) 0.0002076 9 0.000 0.5402
s(EKE) 0.8563344 9 5.172 0.0134 *
s(NPP) 0.0001018 9 0.000 0.7820

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
R-sq.(adj) = 0.0947 Deviance explained = 39.3%

5

 −2 −2

 −1

 0

 1

 1

 2

s(x,y,1.86)

−6e+05 −2e+05 2e+05 6e+05

−
5e

+
05

0e
+

00
5e

+
05

x

y

 −2

 −1

 −1

 0

 1 2 3

−1se

 −3

 −3

 −2

 −2

 −1

 0

 1

+1se

0 2000 4000

−
4

−
2

0
2

Depth

s(
D

ep
th

,3
.4

2)

0 100000 250000

−
0.

02
0.

00
0.

02

DistToCAS

s(
D

is
tT

oC
A

S
,0

)

15 20 25 30

−
0.

03
0.

00
0.

03

SST

s(
S

S
T,

0)

0.0 0.2 0.4 0.6

−
8

−
4

0

EKE

s(
E

K
E

,0
.8

6)

500 1000 1500

−
0.

03
0.

00
0.

03

NPP
s(

N
P

P,
0)

Figure 3: Smooths for all covariates with neg-binomial response distribution.

-REML = 382.76 Scale est. = 1 n = 949

Notes:

1. We are using bs="ts" to use the shrinkage thin plate regression spline.
More technical detail on these smooths can be found on their manual page
?smooth.construct.ts.smooth.spec.

2. We have not specified basis complexity (k) at the moment. Note that if you want to
specify the same complexity for multiple terms, it’s often easier to create a variable
that can then be provided to k (for example, specify k1 <- 15 and then set k=k1
in the required s() terms).

Plot

Let’s plot the smooths from this model:
plot(dsm_nb_xy_ms, pages=1, scale=0)

Notes:

1. Setting shade=TRUE gives prettier confidence bands (by default shade=FALSE).
2. As with vis.gam() the response is on the link scale.
3. scale=0 puts each plot on a different y-axis scale, making it easier to see the effects.

Setting scale=-1 will put the plots on a common y-axis scale

We can also plot the bivariate smooth of x and y as we did before, using vis.gam():

6

−5e+05 0e+00 5e+05

−
6e

+
05

0e
+

00
6e

+
05

s(x,y) (link scale)

x

y

 −3
 −3

 −2.5

 −2.5

 −2

 −2

 −1.5
 −1

 −0.5

 0

 0

 0

 0.5

 1

 1.5

Figure 4: Fitted surface with all environmental covariates, and neg-binomial response
distribution.

vis.gam(dsm_nb_xy_ms, view=c("x","y"), plot.type="contour", too.far=0.1,
main="s(x,y) (link scale)", asp=1)

Compare this plot to the equivalent plot generated in the previous exercise when only x
and y were included in the model.

Check

We can use gam.check() and rqgam.check() to look at the residual check plots for this
model.

Do this in the below gaps and comment on the resulting plots and diagnostics.

Looking back through the lecture notes, do you see any problems in these plots or in the
text output from gam.check().

You might decide from the diagnostics that you need to increase k for some of the terms
in the model. Do this and re-run the above code to ensure that the smooths are flexible
enough. The ?choose.k manual page can offer some guidance. Generally if the EDF
is close to the value of k you supplied, it is worth doubling k and refitting to see what
happens. You can always switch back to the smaller k if there is little difference.

Select terms

As was covered in the lectures, we can select terms by (approximate) p-values and by
looking for terms that have EDFs significantly less than 1 (those which have been shrunk).

7

Decide on a significance level that you’ll use to discard terms in the model. Remove the
terms that are non-significant at this level and re-run the above checks, summaries and
plots to see what happens. It’s helpful to make notes for yourself as you go.

It’s easiest to either comment out the terms that are to be removed (using #) or by copying
the code chunk above and pasting it below.

Having removed one smooth and reviewed your model, you may decide you wish to remove
another. Repeat the process of removing a term and looking at plots and diagnostics
again.

Compare response distributions

Use the gam.check() to compare quantile-quantile plots between negative binomial and
Tweedie distributions for the response.

Estimated abundance as a response
So far we have only looked at models with count as the response. Try using a detection
function with covariates and use abundance.est, instead of count, as the response in the
chunk below:

Concurvity
Checking concurvity of terms in the model can be accomplished using the concurvity()
function.
concurvity(dsm_nb_xy_ms)

para s(x,y) s(Depth) s(DistToCAS) s(SST) s(EKE)
worst 2.539199e-23 0.9963493 0.9836597 0.9959057 0.9772853 0.7702479
observed 2.539199e-23 0.8597372 0.8277050 0.9879372 0.9523512 0.6746585
estimate 2.539199e-23 0.7580838 0.9272203 0.9642030 0.8978412 0.4906765
s(NPP)
worst 0.9727752
observed 0.9525363
estimate 0.8694619

By default the function returns a matrix of a measure of concurvity between one of the
terms and the rest of the model.

Compare the output of the models before and after removing terms.

Reading these matrices can be laborious and not much fun. The function
vis.concurvity() in the dsm package is used to visualise the concurvity between terms
in a model by colour coding the matrix (and blanking out the redundant information).

Again compare these plots for models with different terms.

8

Sensitivity
Compare bivariate and additive spatial effects

If we replace the bivariate smooth of location (s(x, y)) with an additive terms
(s(x)+s(y)), we may see a difference in the final model (different covariates selected).
dsm_nb_x_y_ms <- dsm(count~s(x, bs="ts") +

s(y, bs="ts") +
s(Depth, bs="ts") +
s(DistToCAS, bs="ts") +
s(SST, bs="ts") +
s(EKE, bs="ts") +
s(NPP, bs="ts"),

df_hn, segs, obs,
family=nb())

summary(dsm_nb_x_y_ms)

##
Family: Negative Binomial(0.116)
Link function: log
##
Formula:
count ~ s(x, bs = "ts") + s(y, bs = "ts") + s(Depth, bs = "ts") +
s(DistToCAS, bs = "ts") + s(SST, bs = "ts") + s(EKE, bs = "ts") +
s(NPP, bs = "ts") + offset(off.set)
##
Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -20.7743 0.2274 -91.37 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(x) 2.875e-01 9 0.337 0.2697
s(y) 2.338e-04 9 0.000 0.6303
s(Depth) 3.391e+00 9 37.218 9.87e-10 ***
s(DistToCAS) 1.307e-05 9 0.000 0.5246
s(SST) 3.809e-05 9 0.000 0.8175
s(EKE) 8.670e-01 9 5.582 0.0103 *
s(NPP) 2.844e+00 9 23.233 9.15e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
R-sq.(adj) = 0.0993 Deviance explained = 40.8%
-REML = 383.03 Scale est. = 1 n = 949

Try performing model selection as before from this base model and compare the resulting
models.

9

0 2000 4000

−
8

−
6

−
4

−
2

0
2

Depth

s(
D

ep
th

,3
.4

2)

0 2000 4000
−

10
−

5
0

Depth

s(
D

ep
th

,3
.3

9)

Figure 5: Shape of depth covariate response with bivariate s(x,y) and univariate s(x)+s(y).

Compare the resulting smooths from like terms in the model, for example, if depth were
selected in both models, compare EDFs and plots, e.g.:
par(mfrow=c(1,2))
plot(dsm_nb_xy_ms, select=2)
plot(dsm_nb_x_y_ms, select=3)

Note that the argument select= picks just one term to plot. These are in the order in
which the terms occur in the summary() output (so you may well need to adjust the above
code).

Comparing models
As with the detection functions in the earlier exercises, here is a quick function to generate
model results tables with appropriate summary statistics:
summarize_dsm <- function(model){

summ <- summary(model)

data.frame(response = model$family$family,
terms = paste(rownames(summ$s.table), collapse=", "),
AIC = AIC(model),
"Deviance_explained" = paste0(round(summ$dev.expl*100,2),"%")

10

)
}

We can make a list of the models and pass the list to the above function.
add your models to this list!
model_list <- list(dsm_nb_x_y_ms, dsm_nb_xy_ms)
library(plyr)
summary_table <- ldply(model_list, summarize_dsm)
row.names(summary_table) <- c("dsm_nb_x_y_ms", "dsm_nb_xy_ms")

summary_table <- summary_table[order(summary_table$AIC, decreasing=TRUE),]
kable(summary_table,

caption = "Model performance of s(x,y) and s(x)+s(y) in presence of other covariates.")

Table 1: Model performance of s(x,y) and s(x)+s(y) in
presence of other covariates.

response terms AIC Deviance_explained
dsm_nb_xy_ms Negative Binomial(0.114) s(x,y), s(Depth), s(DistToCAS), s(SST), s(EKE), s(NPP) 754.0326 39.31%
dsm_nb_x_y_ms Negative Binomial(0.116) s(x), s(y), s(Depth), s(DistToCAS), s(SST), s(EKE), s(NPP) 752.5570 40.83%

Saving models
Now save the models that you’d like to use to predict with later: I recommend saving as
many models as you can so you can compare the results in the next practical.
add your models here
save(dsm_nb_xy_ms, dsm_nb_x_y_ms,

file="dsms.RData")

11

	Aims
	Load data and packages
	Exploratory analysis
	Pre-model fitting
	Our new friend +
	Plot
	Check
	Select terms
	Compare response distributions

	Estimated abundance as a response
	Concurvity
	Sensitivity
	Compare bivariate and additive spatial effects

	Comparing models
	Saving models

