Availability Bias on Line Transect Surveys

Availability is a kind of heterogeneity

- Animals that become available more often are more likely to be detected.
- Animals that become available closer to observers are more likely to be detected.

Simple Correction Factor

Prob(animal is available)=a

... But animals at small *x* have longer to be available

Prob(animal at *x* is available **at least once**)=a(x)

... But McLaren's a(x) can be greater than 1

Prob(animal at *x* is available **at least once**)=a(x)

McLaren's vs Laake's Method

... But an animal available at big y is less detectable than an animal available at small y

When there is availability bias

- 1. McLaren's method just a poorer version of Laake's method.
- 2. Laake's, McLarn's and similar methods potentially substantially biased. OK when animals in view for short time relative to availability cycle length.
- 3. Cue-counting an option. Not animal-based
- 4. Alternatively, model p(x,y) and availability (animalbased):
 - Borchers, Zucchini, Heide-Jorgensen & Canadas. Hidden Markov models to deal with availability bias on line transect surveys. *Bometrics* 69:703-713.
 - Langrock, Borchers & Skaug. Markov-modulated nonhomogeneous Poisson processes for unbiased estimation of marine mammal abundance. *Journal of the American Statistical Association* **108**: 840-851.
 - Borchers, D.L. and Langrock, R. 2015. Double-Observer Line Transect Surveys with Markov-Modulated Poisson Process Models for Overdispersed Animal Availability. *Biometrics* 71: 1060–1069.

Hidden Markov Model for Availability

Hidden Markov Model for Estimator

Hidden Markov Model for Estimator

Specify availability HMM parameters:

- (1) State transition probabilities: γ s
- (2) Probability available given state: λ s

<u>Special case</u>: 2-states, one of which is available (with $\lambda=1$), the other unavailable (with $\lambda=0$).

Can specify simply by giving mean times available and unavailable in a single availability cycle.

Summary

- When time in view very small relative to availability cycle, simple correction methods work OK – otherwise they do not.
- HMM (or MMPP) method better, but needs forward distances (so collect them it is often not difficult).
 - In simplest case, HMM method needs no more data than Laake's method.
 - More general (generally better) case needs a HMM to have been fitted to availability time series data.
- R package hsltm implements HMM method (email/talk to me if interested).