Distance Sampling and Animal Movement

Richard Glennie
University of St Andrews
rg374@st-andrews.ac.uk
Assumption: Objects are detected at their *initial* location.
Assume: Objects are detected at their *initial* location.
Assume: Objects are detected at their initial location.

Violate: Move in response to observer.
Assume: Objects are detected at their *initial* location.

Violate: Move in response to observer.

Mitigate:

- Survey Protocol
- Left truncation
- Double Observer Methods
Assume: Objects are detected at their *initial* location.

Violate: Move in response to observer.

Mitigate:
- Survey Protocol
- Left truncation
- Double Observer Methods

Assume: Objects are detected at their *initial* location.

Violate: Move *independently* of the observer.
Assume: Objects are detected at their initial location.

Violate: Move independently of the observer.
Assume: Objects are detected at their *initial* location.

Violate: Move *independently* of the observer.

Mitigate: ?
\hat{N} = \frac{n}{\hat{p}}
Increasing total number of detections

Increasing animal speed

\[\hat{N} = \frac{n}{\hat{p}} \]
\[\hat{N} = \frac{n}{\hat{p}} \]
Increasing animal speed

Decreasing estimated detection probability

\[\hat{N} = \frac{n}{\hat{p}} \]
\[\hat{N} = \frac{n}{\hat{p}} \]
SIMULATION

Line transects

DS

Relative Bias (%) vs. Animal Speed (as % of Observer Speed)
SIMULATION

Line transects

![Graph showing relative bias vs. animal speed for line transects.]

Point transects

![Graph showing relative bias vs. animal speed for point transects.]

- **DS**: Indicates a specific data series or condition.
Assume: Objects are detected at their initial location.

Violate: Move independently of the observer.

Mitigate:

◦ Survey Protocol
Survey Protocol

Increasing total number of detections

Increasing animal speed
1. Search further.
Survey Protocol

1. Search further.

2. Ignore overtaking animals.
Survey Protocol

1. Search further.
2. Ignore overtaking animals.
3. Take a snapshot.
1. Search further.

2. Ignore overtaking animals.

3. Take a snapshot.

Assume: Objects are detected at their *initial* location.

Violate: Move *independently* of the observer.

Mitigate:

- Survey Protocol
- Truncate?
Assume: Objects are detected at their *initial* location.

Violate: Move *independently* of the observer.

Mitigate:
- Survey Protocol
- Truncate?
Assume: Objects are detected at their *initial* location.

Violate: Move *independently* of the observer.

Mitigate:

- Survey Protocol
- Model?
\[g(x) = \mathbb{P}(\text{detected} \mid \text{located at } x) \]
Distance Sampling

Observer \[\Rightarrow x \Rightarrow \text{Animal} \]

\[g(x) = \mathbb{P}(\text{detected} \mid \text{located at } x) \]

\[f(x) = \frac{g(x)\pi(x)}{\int g(x)\pi(x) \, dx} \]
Distance Sampling

Observer \(X \) \rightarrow \text{Animal}

\(g(x) = \mathbb{P}(\text{detected} \mid \text{located at} \ x) \)

\[f(x) = \frac{g(x)\pi(x)}{\int g(x)\pi(x) \, dx} \]

\(\hat{p} = \int \hat{g}(x)\pi(x) \, dx \)
Distance Sampling

Observer → \mathcal{X} → Animal

$g(x) = \mathbb{P}(\text{detected} \mid \text{located at } x)$

$f(x) = \frac{g(x) \pi(x)}{\int g(x) \pi(x) \, dx}$

$\hat{p} = \int \hat{g}(x) \pi(x) \, dx$
Distance Sampling

Observer \rightarrow \mathcal{X} \rightarrow \text{Animal}

\[g(x) = \mathbb{P}(\text{detected} \mid \text{located at } x) \]

\[f(x) = \frac{g(x) \pi(x)}{\int g(x) \pi(x) \, dx} \]

\[\hat{p} = \int \hat{g}(x) \pi(x) \, dx \]
\[g(x) = \mathbb{P}(\text{detected} \mid \text{located at } x) \]

\[f(x) = \frac{g(x)\pi(x)}{\int g(x)\pi(x) \, dx} \]

\[\hat{p} = \int \hat{g}(x)\pi(x) \, dx \]
Distance Sampling

Observer \(\xrightarrow[]{} \)Animal

\[g(x) = \mathbb{P}(\text{detected} \mid \text{located at } x) \]

\[f(x) = \frac{g(x) \pi(x)}{\int g(x) \pi(x) \, dx} \]

\[\hat{p} = \int \hat{g}(x) \pi(x) \, dx \]

\[\lambda(r) = \frac{\alpha}{r^\beta} \]

\[g(\vec{x}, t) = \lambda(\vec{x}_t) \exp \left(-\int_0^t \lambda(\vec{x}_s) \, ds \right) \]
Observer \xrightarrow{\mathcal{X}} \text{Animal}

\[g(x) = \mathbb{P}(\text{detected} \mid \text{located at } x) \]

\[f(x) = \frac{g(x)\pi(x)}{\int g(x)\pi(x) \, dx} \]

\[\hat{p} = \int \hat{g}(x)\pi(x) \, dx \]

\[\lambda(r) = \frac{\alpha}{r^\beta} \]

\[g(\vec{x}, t) = \lambda(\vec{x}_t) \exp \left(-\int_0^t \lambda(\vec{x}_s) \, ds \right) \]

\[\hat{p} = \int \int \hat{g}(\vec{x}, t)\pi(\vec{x}) \, dt \, d\vec{x} \]
Distance Sampling

Observer \rightarrow \mathcal{X} \rightarrow \text{Animal}

\[g(x) = \mathbb{P}(\text{detected} \mid \text{located at } x) \]

\[f(x) = \frac{g(x)\pi(x)}{\int g(x)\pi(x) \, dx} \]

\[\hat{p} = \int \hat{g}(x)\pi(x) \, dx \]

MDS

\[\mathbf{x} \]

\[\lambda(r) = \frac{\alpha}{r^\beta} \]

\[g(\mathbf{x}, t) = \lambda(\mathbf{x}_t) \exp \left(-\int_0^t \lambda(\mathbf{x}_s) \, ds \right) \]

\[\hat{p} = \int \int \hat{g}(\mathbf{x}, t)\pi(\mathbf{x}) \, dt \, d\mathbf{x} \]
SIMULATION

Line transects

Point transects
Applied to Spotted Dolphins in the Eastern Tropical Pacific.
• Applied to Spotted Dolphins in the Eastern Tropical Pacific.

• Use tag data on 19 individuals to estimates movement speed using a Brownian motion movement model.
- Applied to Spotted Dolphins in the Eastern Tropical Pacific.

- Use tag data on 19 individuals to estimates movement speed using a Brownian motion movement model.

- Animal speed was around 40-50% observer speed.
- Applied to Spotted Dolphins in the Eastern Tropical Pacific.

- Use tag data on 19 individuals to estimates movement speed using a Brownian motion movement model.

- Animal speed was around 40-50% observer speed.

<table>
<thead>
<tr>
<th>Year</th>
<th>Est.</th>
<th>CV</th>
<th>95% CI</th>
<th>Est.</th>
<th>CV</th>
<th>95% CI</th>
<th>Est.</th>
<th>CV</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>1073</td>
<td>22%</td>
<td>(700, 1644)</td>
<td>1166</td>
<td>18%</td>
<td>(750, 1581)</td>
<td>918</td>
<td>18%</td>
<td>(588, 1248)</td>
</tr>
<tr>
<td>2000</td>
<td>947</td>
<td>23%</td>
<td>(601, 1493)</td>
<td>999</td>
<td>19%</td>
<td>(627, 1372)</td>
<td>787</td>
<td>19%</td>
<td>(492, 1082)</td>
</tr>
<tr>
<td>2003</td>
<td>1518</td>
<td>19%</td>
<td>(1053, 2189)</td>
<td>1550</td>
<td>15%</td>
<td>(1087, 2013)</td>
<td>1223</td>
<td>15%</td>
<td>(854, 1592)</td>
</tr>
<tr>
<td>2006</td>
<td>1213</td>
<td>24%</td>
<td>(755, 1947)</td>
<td>1342</td>
<td>20%</td>
<td>(809, 1874)</td>
<td>1059</td>
<td>20%</td>
<td>(636, 1481)</td>
</tr>
</tbody>
</table>
• Applied to Spotted Dolphins in the Eastern Tropical Pacific.

• Use tag data on 19 individuals to estimate movement speed using a Brownian motion movement model.

• Animal speed was around 40-50% observer speed.
• Applied to Spotted Dolphins in the Eastern Tropical Pacific.

• Use tag data on 19 individuals to estimates movement speed using a Brownian motion movement model.

• Animal speed was around 40-50% observer speed.

Assume: Objects are detected at their initial location.

Violate: Move independently of the observer.

Mitigate:

- Survey Protocol
- Model
1. Need Detection Times and 2d locations.
Need Detection Times and 2d locations.

Need information on movement.
FURTHER DEVELOPMENTS
FURTHER DEVELOPMENTS

1. Cameras and Gliders
FURTHER DEVELOPMENTS

1. Cameras and Gliders

2. Responsive Movement

FURTHER DEVELOPMENTS

1. Cameras and Gliders

2. Responsive Movement

3. Behaviour-Switching Movement

Distance Sampling and Animal Movement

moveds

Fits models that account for non-responsive, Brownian motion of individuals during distance sampling surveys.

Install

In R, the latest release can be installed using the `devtools` package with command

```
devtools::install_github("r-glenlie/moveds@v0.1.0", build_vignettes = TRUE)
```

The package requires you have a C compiler installed on your system. Windows users may need to install R-tools for this reason. It is assumed Linux and Mac users have a compiler installed.

Richard Glennie
University of St Andrews
rg374@st-andrews.ac.uk