Three ways to think about detectability in distance sampling
1. The detection function, $g(x)$

$g(x) = \text{probability of detecting an animal, given that it is at distance } x \text{ from the line}$

We assume $g(0) = 1$

Note: histogram bars scaled

\[\hat{P}_a = \frac{\text{area under curve}}{\text{area under rectangle}} = \frac{\int_0^w \hat{g}(x)dx}{1 \times w} \]
2. Effective strip (half) width, μ

- Instead of a line transect out to w, where proportion P_a objects are seen, think of a strip transect out to some distance μ.

The ESW, μ, is the distance at which as many objects are seen beyond μ as are missed within μ.

Line transect out to w

\[\hat{N} = \frac{nA}{2wL \hat{P}_a} \]

Strip transect out to μ

\[\hat{N} = \frac{nA}{2\mu L} \]

\[\hat{P}_a = \frac{\text{area under curve}}{\text{area under rectangle}} = \frac{\int_{0}^{w} \hat{g}(x)dx}{w} = \frac{\hat{\mu}}{w} \]
3. The probability density function, \(f(x) \)

\[f(x)dx = \text{probability of observing an animal between distance } x \text{ and } x+dx, \text{ given it was observed somewhere in } (0,w) \]

\(f(x) \) is called the probability density function (pdf) of the observed distances

Because observations are between 0 and \(w \), the area under \(f(x) \) is 1.0

\[
\int_{0}^{w} f(x)dx = 1
\]

Histogram bars are scaled so that area under histogram is 1.

Area under \(f(x) \) is 1
Why is $f(x)$ useful?

1. Useful for point transects, as it gives the expected distribution of detection distances

True distribution of animals

Detection function, $g(x)$

Observed distribution, $f(x)$

Line transect

Point transect

see lecture on point transects
Why is $f(x)$ useful?

2. Gives another way to estimate P_a

Lots of statistical machinery to fit pdfs, so this is the way Distance does it.

\[
\hat{P}_a = \frac{\text{area under curve}}{\text{area under rectangle}} = \frac{1}{\hat{f}(0)w}
\]

\[
\hat{N} = \frac{nA}{2wL\hat{P}_a} = \frac{nA}{2wL\left(\frac{1}{\hat{f}(0)w}\right)} = \frac{nA\hat{f}(0)}{2L}
\]

Question: How are $f(0)$ and μ related?
Three ways to think about line transects

1. Proportion seen or average probability of detection in covered region, P_a

$$\hat{N} = \frac{nA}{2wL\hat{P}_a} \quad \hat{D} = \frac{n}{2wL\hat{P}_a}$$

2. Effective strip (half-)width, ESW, μ.

$$\hat{N} = \frac{nA}{2\hat{\mu}L} \quad \hat{D} = \frac{n}{2\hat{\mu}L}$$

3. Pdf of observed distances, $f(x)$, evaluated at 0 distance $f(0) = \frac{1}{\mu}$

$$\hat{N} = \frac{n\hat{f}(0)A}{2L} \quad \hat{D} = \frac{n\hat{f}(0)}{2L}$$
Notation – line transects

Known constants and data:

- k = number of lines
- l_j = length of j^{th} line, $j=1,...,k$
- $L = \Sigma l_j$ = total line length
- n = number of animals or clusters detected
- x_i = distance of i^{th} detected animal or cluster from the line, $i=1,...,n$
- w = truncation distance for x
- A = size of region of interest
- $a = \text{area of “covered” region } = 2wL$
- $s_i = \text{size of } i^{th} \text{ detected cluster, } i=1,...,n$
Notation – line transects

Parameters and functions:

\(N \) = population size / abundance of animals

\(N_s \) = abundance of clusters

\(D \) = density = animals per unit area = \(N/A \)

\(D_s \) = density of clusters

\(g(x) \) = detection function

\(f(x) \) = probability density function (pdf) of observed distances

\(f(0) = f(x) \) evaluated at 0 distance

\(\mu \) = effective strip (half-)width

\(P_\alpha \) = probability of detecting an animal or cluster given it is in the covered area \(\alpha \)

\(E(s) \) = mean size of clusters in the population