Three ways to think about detectability in distance sampling

1. The detection function, $g(x)$

$g(x)=$ probability of detecting an animal, given that it is at distance x from the line

$$
\hat{P}_{a}=\frac{\text { area under curve }}{\text { area under rectangle }}=\frac{\int_{0}^{w} \hat{g}(x) d x}{1 \times w}
$$

2. Effective strip (half) width, μ

- Instead of a line transect out to w, where proportion P_{a} objects are seen, think of a strip transect out to some distance μ.

The ESW, μ, is the distance at which as many objects are seen beyond μ as are missed within μ

Line transect out to $w \quad$ Strip transect out to μ

$$
\hat{N}=\underbrace{\frac{n A}{2 w L \hat{P}_{a}}}_{\begin{array}{c}
\text { Area } \\
\text { covered }
\end{array}}
$$

$$
\hat{N}=\underbrace{\frac{n A}{2 \hat{\mu} L}}_{\text {Area }}
$$

effectively
covered

$$
\hat{P}_{a}=\frac{\text { area under curve }}{\text { area under rectangle }}=\frac{\int_{0}^{w} \hat{g}(x) d x}{w}=\frac{\hat{\mu}}{w}
$$

University of St Andrews

3. The probability density function, $f(x)$

$f(x) \mathrm{dx}=$ probability of observing an animal between distance x and $x+d x$, given it was observed somewhere in ($0, \mathrm{w}$)
$f(x)$ is called the probability density function (pdf) of the observed distances
Because observations are between 0 and w, the area under $f(x)$ is 1.0
$\int_{0}^{w} f(x) d x=1$

Area under $f(x)$ is 1

University of St Andrews

Why is $f(x)$ useful?

1. Useful for point transects, as it gives the expected distribution of detection distances

True distribution of animals

Detection function, $g(x)$

Observed distribution, $f(x)$

CREEM

Centre for Research into Ecological

 transects

University of St Andrews

Why is $f(x)$ useful?

2. Gives another way to estimate P_{a}

Lots of statistical machinery to fit pdfs, so this is the way Distance does it.

Question: How are $f(0)$ and μ related?

$$
\hat{P}_{a}=\frac{\text { area under curve }}{\text { area under rectangle }}=\frac{1}{\hat{f}(0) w} \quad \hat{N}=\frac{n A}{2 w L \hat{P}_{a}}=\frac{n A}{2 w L(1 / \hat{f}(0) w)}=\frac{n A \hat{f}(0)}{2 L}
$$

Formulae - line transects

Three ways to think about line transects

1. Proportion seen or average probability of detection in covered region, P_{a}

$$
\hat{N}=\frac{n A}{2 w L \hat{P}_{a}} \quad \hat{D}=\frac{n}{2 w L \hat{P}_{a}}
$$

2. Effective strip (half-)width, ESW, μ.

$$
P_{a}=\mu / w
$$

$$
\hat{N}=\frac{n A}{2 \hat{\mu} L} \quad \hat{D}=\frac{n}{2 \hat{\mu} L}
$$

3. Pdf of observed distances, $f(x)$, evaluated at 0 distance $f(0)=1 / \mu$

$$
\hat{N}=\frac{n \hat{f}(0) A}{2 L} \quad \hat{D}=\frac{n \hat{f}(0)}{2 L}
$$

Notation - line transects

Known constants and data:
$k=$ number of lines
$l_{j}=$ length of j th line, $j=1, \ldots, k$
$L=\Sigma I_{j}=$ total line length
$n=$ number of animals or clusters detected
$x_{i}=$ distance of $i^{\text {th }}$ detected animal or cluster from the line, $i=1, \ldots, n$
$w=$ truncation distance for x
$A=$ size of region of interest
$a=$ area of "covered" region $=2 w L$
$s_{i}=$ size of $f^{\text {th }}$ detected cluster, $i=1, \ldots, n$

Notation - line transects

Parameters and functions:
N = population size / abundance of animals
$N_{s}=$ abundance of clusters
$D=$ density $=$ animals per unit area $=N / A$
$D_{s}=$ density of clusters
$g(x)=$ detection function
$f(x)=$ probability density function (pdf) of observed distances
$f(0)=f(x)$ evaluated at 0 distance
$\mu=$ effective strip (half-)width
$P_{a}=$ probability of detecting an animal or cluster given it is in the covered area a $E(s)=$ mean size of clusters in the population

CREEM

