Making Distance Sampling Work

- Assumptions and effect of violation
- Reliable distance sampling
- Pooling robustness
- Examples of imperfect data
Recap of distance sampling

There are two stages to estimating abundance

Stage 1: given \(n \), how many objects are in the surveyed/covered region (of size \(a \)), \(N_a \)

Need to estimate \(P_a \) (or \(f(0) \) or ESW, etc.)

\[
\hat{N}_a = \frac{n}{\hat{P}_a}
\]

Stage 2: given \(\hat{N}_a \), how many objects are in study region (of size \(A \)), \(N \)

‘Scale up’ from what we see in the survey region to the whole study region

\[
\hat{N} = \frac{\hat{N}_a}{a/A}
\]
Assumptions for estimating N_a (stage 1)

1. **Animals distributed independently of line or point**

 This ensures the true distribution of animals with respect to the line or point is known.

 Violated by non-random line/point placement.

 Substantial violation can produce substantial bias (e.g. roadside counts).

 e.g. for line transects.

 - True distribution of animals
 - Detection function, $g(x)$
 - Observed distribution, $f(x)$
Assumptions for estimating N_a (stage 1)

2. All animals on the line or point are detected i.e. $g(0)=1$
 It is a critical assumption - violation causes negative bias
 e.g. if $g(0)=0.8$, estimates of N are 80% of true N on average
Assumptions for estimating N_a (stage 1)

3. Observation process is a ‘snapshot’

Other ways to phrase this:

Observers are moving much faster than the animals

Animals do not move before they can be detected

Problems of independent/non-responsive movement

An animal moving independently of the observer (compared to moving in response to the observer) produces positive bias; size of bias depends on relative rate of movement of observer and animal, and type of survey.

Point transect methods in particular need to use ‘snapshot’ method.
Assumptions for estimating N_a (stage 1)

3. Observation process is a ‘snapshot’ (continued...)

Problems of responsive movement

Responsive movement can cause large bias

It can occur within a single line/point or between lines/points

If animals are ‘driven’ from one line/point to the next ahead of the observer, positive bias will result.

Note: movement independent of observer outwith ‘snapshot’ is fine – in this case, the same animal can be detected on multiple lines/transects
Assumptions for estimating N_a (stage 1)

4. **Distances are measured accurately**
 Random errors cause bias.
 - *Bias is generally small for line transect estimators,*
 - *Can be large for point transect estimators.*
 - *Both are sensitive to systematic bias and to rounding to 0 distance (or angle).*
 Can use grouped data collection.

5. **Detections are independent**
 Violation has little effect. *(Model selection methods for $g(x)$, such as AIC, are somewhat affected)*
Assumptions for estimating N given N_a (stage 2)

1. Lines or points are located according to a survey design with appropriate randomization

 We use properties of the survey design to extrapolate from the surveyed/covered region to the study region (‘design-based’)

 Non-random survey design means density in surveyed/covered region may not be representative of density in study region. Also variance may be biased.

Image courtesy of FreeDigitalPhotos.net
Reliable distance sampling (1)

1. Reliable estimation of P_a (or $f(0)$ or ESW, etc.)

In addition to the assumptions, we would like:

SHAPE CRITERION
Detection function should have a ‘shoulder’ (i.e. $g'(0)=0$)

Data that have a wide shoulder are preferable

A wide shoulder makes it easier to estimate area under rectangle (or $f(0)$, etc.)
(1) Reliable estimation of P_a

Good field methods will avoid a ‘spike’ like this

Avoid

a) rounding distances (and angles) to zero,
b) ‘guarding the trackline’
(1) Reliable estimation of P_a (cont.)

Flexible detection function model can fit the data (see later)

Sample size of observations (~60-80)
- less for detection functions with ‘easy’ shapes
- more for point transects and ‘difficult shapes’.
2. Reliable estimation of N from N_a

In addition to the assumption of randomized design, we would like a ‘large’ sample of lines or points (20 or more), evenly distributed through the study region.

Photos: Ullas Karanth

e.g. surveys of tiger prey in India
Pooling robustness

Individuals can have quite different detection functions, but this produces little bias (up to a point!)

‘Pooling robustness’ = robust to pooling of multiple detection functions

e.g. Simulation study (unpublished!) Truth = 1000 animals

Scenario 1: animals have a gamma distribution of detection functions between min and max shown.

Mean estimate from simulation: 984 animals (SE 2.3). Bias -1.6%

Scenario 2: half of animals have max detection function, half have minimum.

Mean estimate from simulation: 976 animals (SE 2.7). Bias -2.4%
Non-ideal data