
Measures of Precision



Overview

•How to quantify uncertainty

•Why variance is important

•Components of variation in distance sampling

•Controlling variance

•Estimating variance

• Analytic

• Bootstrap

•Confidence Intervals



How do estimates behave?

Consider an artificial population

D = 500 per unit2 (no density gradient)

Design: 5 transects equally-spaced
(w=0.05)

Results:

= 140

= 34.6

= 484.4D̂
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How do estimates behave?

Consider a duplicate survey

Same population model

Same survey design (with a new random
start point)

Results:

= 139

= 37.6

= 522.1D̂
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How do estimates behave?

Imagine repeating this process over and over, using the same
survey design and a population drawn from the same density
model

Each survey will yield:

A different value for

A different value for

A different value for D̂
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What happens if we repeat this simulated survey 10,000 times?

We end up with distributions for , and

How do estimates behave?
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How do estimates behave?

We are interested in the hypothetical long-run behaviour of our
estimator

How variable are the estimates?

E.g. what is the variance of the distribution for ?

What is the average value of the estimates?

E.g. is the distribution for centred on the truth?

L

fn
D

2

)0(ˆˆ 

D̂

D̂



Low precision = high variance = high uncertainty
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Bias vs. Variance



Quantifying uncertainty

Different ways of measuring uncertainty:

1. Variance = the average squared difference from the mean (the inverse of precision)

If the estimator for D is unbiased, then

2. Standard error = the standard deviation of an estimator (i.e. the square root of
estimator variance)
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Quantifying uncertainty

3. Coefficient of Variation (CV) = the standard error dived by the mean (i.e. a standardised
version of the standard error)

Useful for comparing variances when the scale and/or the units of measurement differ

E.g. consider two variables: X has mean = 100 and variance = 400,
Y has mean = 1 and variance = 0.04
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Quantifying uncertainty

4. Confidence Interval (CI) = a range of plausible values for the truth

Calculations are based on variance

Different ways to calculate CIs, depending on the data, e.g.

Normal

Lognormal (available in Distance)

Bootstrap (available in Distance)

More about CIs later…



Why is variance important?

•In a real survey, we use an estimator and the survey data to produce a single
estimate for D

•If the estimator variance is low, then individual estimates are more likely to be
close to the truth (assuming low bias)

•If estimator variance is high, then individual estimates are more likely to be far
from the truth

•For reliable results, we want estimators with LOW variance (and low bias!)



We can break down the familiar distance sampling density estimator (for
line transects with no clusters) into three components:

Variance by components
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Variance by components
We can calculate variance measures separately for each component

Mean 26.1 38.5 500.6

Se 2.27 2.71 56.34

CV 8.69 % 7.04 % 11.26 %
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•The variance of is affected by the variance of its components

•If the variance of is high, then the variance of will be high and the
variance of will be high

•Similarly, if the variance of is high then the variance of will be high

•So for reliable estimates, we want and to be low

Variance by components
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Point Standard Percent Coef. 95% Percent

Parameter Estimate Error of Variation Confidence Interval

--------- ----------- ----------- -------------- ----------------------

f(0) 1.5726 0.19139 12.17 1.2304 2.0102

p 0.42391 0.51589E-01 12.17 0.33165 0.54185

ESW 0.63587 0.77383E-01 12.17 0.49747 0.81277

n/L 0.80579E-01 0.25990E-01 32.25 0.40601E-01 0.15992

DS 0.63361E-01 0.21843E-01 34.47 0.31088E-01 0.12914

E(S) 2.0143 0.20292 10.07 1.6433 2.4692

D 0.12763 0.45838E-01 35.92 0.61445E-01 0.26510

N 10849. 3896.4 35.92 5223.0 22534.

Variance by components

Distance provides several variance measures for each component



Encounter rate variance

The encounter rate = n/L = the number of detections per unit of distance

The variance of n/L is related to the variance of n, and therefore to the variances
of counts for individual transects

Therefore, if counts from individual transects are highly variable the variance of
n/L will also be high    knVarnVarnVar  ...][ 1

assumes
independence



Controlling variance

•We can use this knowledge of encounter rate variance to help design good
surveys

•Three main ways we can reduce encounter rate variance:

• Use systematic survey designs

• Run transects parallel to density gradients

• Use designs with several transects



Controlling variance

1. Use systematic survey designs

These give lower variance than
completely random designs

More likely to give even coverage of
the survey region



Controlling variance

2. Run transects parallel to known density
gradients

i.e. perpendicular to gradient contours

Lines are more likely to have similar
encounter rates since each line will cover
the full range in density



Controlling variance

3. Use many lines (or points)

This will give good spatial coverage

Using longer lines will also help to
reduce variation between lines
(because each transect will have a
larger sample size)



Recap

• Density estimates will vary between (hypothetical) duplicate surveys

• Density estimators with low bias and low variance are more reliable, since individual
estimates are more likely to be close to the truth

• High variance in the encounter rate and the fitted detection function will lead to high
variance in

• Good survey design can help to lower the variance of by reducing encounter rate
variance
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Estimating variance

•So how do we measure the variance?

•In reality we rarely know the true variance of our estimator, and we can’t
carry out 1000s of real surveys…

•What we need to do is estimate the variance using the data from a single
survey

•Two methods:

• Analytic

• Bootstrap



Estimating variance – Analytic

We can describe the relationship between the variance of and the
variance of its components more formally using a useful approximation
known as the Delta method

Rule: when two or more components are multiplied together, squared CVs
add
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Estimating variance – Analytic

We can check this approximation works using the results of our simulation,

We can rearrange the squared CV to get an estimate of the variance
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Estimating variance – Analytic

• To estimate the variance of we need to estimate the squared CVs of the
components

• We therefore need estimates for the variances of and

• The variance of can be estimated using standard methods (because its
parameters are obtained via maximum likelihood)

• But is part of the data, not an estimate, and estimating its variance is
more difficult...
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Estimating variance – Analytic

• To estimate we need to use data from the individual lines (or points)

• A minimum of 20 replicate lines (or points) is recommended for obtaining a
reliable estimate of encounter rate variance

• The (improved) formula used in Distance:
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Estimating variance – Analytic

• Note that the formula used in Distance assumes independently arranged lines

• It therefore tends to overestimate encounter rate variance for systematic
designs (for which there are no analytic variance estimators)

• Stratification-based methods can help to remove this bias (see later lecture)

• Highlights the difference between the true (and unknown) variance and our
ability to estimate it



Estimating variance – Analytic

Three options in Distance:

1. Use the formula we have just seen

2. Assume var(n)=n (last resort)

3. Assume var(n)=θn
(slightly better last resort)



Estimating variance – Analytic
Point Standard Percent Coef. 95% Percent

Parameter Estimate Error of Variation Confidence Interval
--------- ----------- ----------- -------------- ----------------------

f(0) 1.5726 0.19139 12.17 1.2304 2.0102
p 0.42391 0.51589E-01 12.17 0.33165 0.54185
ESW 0.63587 0.77383E-01 12.17 0.49747 0.81277
n/L 0.80579E-01 0.25990E-01 32.25 0.40601E-01 0.15992
DS 0.63361E-01 0.21843E-01 34.47 0.31088E-01 0.12914
E(S) 2.0143 0.20292 10.07 1.6433 2.4692
D 0.12763 0.45838E-01 35.92 0.61445E-01 0.26510
N 10849. 3896.4 35.92 5223.0 22534.

--------- ----------- ----------- -------------- ----------------------

Measurement Units
---------------------------------
Density: Numbers/Sq. nautical mi

ESW: nautical miles

Component Percentages of Var(D)
-------------------------------
Detection probability : 11.5
Encounter rate : 80.7
Cluster size : 7.9

p and ESW are derived
from 1/f(0), so these
three share the same CV

Similarly, N and D
always have the
same CV



Estimating variance – Analytic

To find the relative contributions of each component we take the ratio of
squared CVs

E.g.

Component

Typical values

Line Point

Encounter rate 70-80% 40-50%

Detection function <30% >50%

 
 


2

2
0

100
)ˆ(

))(ˆ(
%

Dcv

fcv The percentage relative
contribution made by f(0)



Estimating variance – Analytic

Point Standard Percent Coef. 95% Percent
Parameter Estimate Error of Variation Confidence Interval
--------- ----------- ----------- -------------- ----------------------

f(0) 1.5726 0.19139 12.17 1.2304 2.0102
p 0.42391 0.51589E-01 12.17 0.33165 0.54185
ESW 0.63587 0.77383E-01 12.17 0.49747 0.81277
n/L 0.80579E-01 0.25990E-01 32.25 0.40601E-01 0.15992
DS 0.63361E-01 0.21843E-01 34.47 0.31088E-01 0.12914
E(S) 2.0143 0.20292 10.07 1.6433 2.4692
D 0.12763 0.45838E-01 35.92 0.61445E-01 0.26510
N 10849. 3896.4 35.92 5223.0 22534.

--------- ----------- ----------- -------------- ----------------------

Measurement Units
---------------------------------
Density: Numbers/Sq. nautical mi

ESW: nautical miles

Component Percentages of Var(D)
-------------------------------
Detection probability : 11.5
Encounter rate : 80.7
Cluster size : 7.9

12.172 / 35.922 x 100%

32.252 / 35.922 x 100%



Estimating variance – Bootstrap

The bootstrap method works as follows:

1. Generate a new sample by repeatedly sampling from the original sample randomly
and with replacement

- some units from the original sample may appear more than once in the new sample (others might
not appear at all)

- each new sample must be the same size as the original sample

2. Calculate a density estimate using the new sample

3. Repeat steps 1 & 2 a large number of times (e.g. 999) to obtain multiple density
estimates



Estimating variance – Bootstrap

• Works well if the original sample is large and representative

• The distribution of density estimates approximates the true distribution that
we would (theoretically) get from duplicate surveys

• The variance of the bootstrap estimates can be used as an estimate of the
true variance

• In Distance we resample the individual transects



Estimating variance – Bootstrap

• For example, consider a survey with 12 replicate lines

• Bootstrap sample 1:
• Transects: 5, 12, 1, 7, 6, 11, 7, 6, 9, 7, 11, 2
• Density estimate = D1

• Bootstrap sample 2:
• Transects: 3, 4, 9, 1, 12, 7, 8, 11, 1, 3, 2, 12
• Density estimate = D2

• Do this B times and use the variance of the B density estimates as an
estimate of )ˆvar(D



Estimating variance – Bootstrap

The usual option
(samples = transects)

The number of bootstrap
samples to use (test on a
small number first to ensure
all is properly set up)



Confidence Intervals

• Confidence intervals (CIs) give us a range of plausible values for the truth

• Constructed using data from a single sample

• If we were to carry out multiple surveys and construct 95% CIs from each
survey, we would expect 95% of those CIs to contain the true value

• To calculate CIs we need to know the shape of the distribution of estimates



Confidence Intervals - Analytic

• Two choices:

• Normal
• symmetrical

• easy to use

• allows negative values

• Lognormal
• asymmetric (skewed)

• trickier to use

• typically higher interval limits

• does not allows negative values



Confidence Intervals - Analytic

Distance uses 95% lognormal CIs

Point Standard Percent Coef. 95% Percent
Parameter Estimate Error of Variation Confidence Interval
--------- ----------- ----------- -------------- ----------------------

f(0) 1.5726 0.19139 12.17 1.2304 2.0102
p 0.42391 0.51589E-01 12.17 0.33165 0.54185
ESW 0.63587 0.77383E-01 12.17 0.49747 0.81277
n/L 0.80579E-01 0.25990E-01 32.25 0.40601E-01 0.15992
DS 0.63361E-01 0.21843E-01 34.47 0.31088E-01 0.12914
E(S) 2.0143 0.20292 10.07 1.6433 2.4692
D 0.12763 0.45838E-01 35.92 0.61445E-01 0.26510
N 10849. 3896.4 35.92 5223.0 22534.

--------- ----------- ----------- -------------- ----------------------
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Confidence Intervals – Bootstrap

We can use the bootstrap estimates to construct CIs for the true density in
two ways:

Parametric

Use the lognormal CI method with the bootstrap estimate of variance instead of the
analytic estimate

Non-parametric

Place the bootstrap estimates in order of increasing size and use percentiles as the CI
limits (e.g. for a 95% CI using 999 bootstrap estimates, take the 25th estimate as the
lower limit and the 975th estimate as the upper limit)



Confidence Intervals – Bootstrap

Both options are provided in Distance

Pooled Estimates:
Estimate %CV # df 95% Confidence Interval
--------------------------------------------------------

DS 0.20906E-01 38.14 999 19.43 0.96777E-02 0.45162E-01
0.12166E-01 0.41557E-01

D 0.39125E-01 42.24 999 23.93 0.16953E-01 0.90294E-01
0.22020E-01 0.81797E-01

N 27987. 42.24 999 23.93 12127. 64589.
15752. 58511.

Note: Confidence interval 1 uses bootstrap SE and log-normal 95% intervals.
Interval 2 is the 2.5% and 97.5% quantiles of the bootstrap estimates.

Option 1 (parametric)

Option 2 (non-parametric)



Other advantages of the bootstrap

Ambivalent model fit
E.g. different detection functions can be fitted to each bootstrap resample if it is difficult to
choose between competing models (model uncertainty is therefore incorporated into the
bootstrap density estimates)

Checking independence of components
If the bootstrap and analytical CIs are very different, then the ‘squared CVs add’ rule may
have been violated (i.e. due to non-independence of the components of the density
estimator – a necessary assumption for this approximation to work well)



Further reading
• Section 3.6 of Buckland et al. (2001) Introduction to Distance Sampling

• Sections 6.3.1.2 (lines) and 6.3.2.2 (points) of Buckland et al. (2015) Distance
Sampling: Methods and Applications

• Fewster et al. (2009) Estimating the encounter rate variance in distance sampling.
Biometrics 65: 225-236.


