Point transect sampling

Random points or systematic grid of points randomly placed; observer records distance to any detected animals

Point transect sampling

For *k* point counts with certain detection to distance *w*:

$$\hat{D} = \frac{n}{k\pi w^2}$$

How does this change if detection is uncertain?

Effective radius and effective area

 ρ = effective radius

 ν = effective area

Covered area: $\mathbf{a} = k\pi \mathbf{w}^2$

Proportion detected:
$$P_a = \frac{k\pi\rho^2}{k\pi w^2} = \frac{\rho^2}{w^2}$$

Estimated density:
$$\hat{D} = \frac{n}{a\hat{P}_a} = \frac{n}{k\pi w^2 \times \hat{\rho}^2 / w^2} = \frac{n}{k\pi \hat{\rho}^2}$$

Area and hence number of birds increase linearly with distance:

Probability density function

Detection function

The effective radius ρ ...

... is the distance such that as many birds beyond ho are detected as are missed within ho of the point.

Area under curve:

$$\int_{0}^{w} f(r)dr = 1$$

Area of triangle:

$$\frac{\rho \times \rho f'(0)}{2} = \frac{\rho^2 h(0)}{2}$$

Hence
$$\hat{\rho}^2 = \frac{2}{\hat{h}(0)}$$
 and $\hat{v} = \frac{2\pi}{\hat{h}(0)}$

so that
$$\hat{D} = \frac{n\hat{h}(0)}{2\pi k}$$

Notation: point transects

Known constants and data:

```
k = \text{number of points}
```

n = no. of animals or clusters detected

 r_i = distance of i^{th} detected animal or cluster from the point, i = 1, ..., n

w = truncation distance for r

A= size of region of interest

a = size of covered region = $k\pi w^2$

 s_i = size of ith detected cluster, i = 1, ..., n

Point transect notation (cont)

Functions:

g(r) = detection function

f(r) = probability density function (pdf) of detection distances

h(r) = f'(r) = slope of pdf f(r)

h(0) = slope of pdf evaluated at r=0

Point transect notation (cont)

Parameters:

D = density = animals per unit area

 D_s = density of clusters

 $N = \text{population size} = D \cdot A$

 ρ = effective radius = $\sqrt{2/h(0)}$

 ν = effective area (per point) = $2\pi/h(0)$

 P_a = prob. of detection of animal or cluster in the covered area a

