Sample size

Estimating the required sample size when designing a distance sampling survey.
Sample size

• Aim for at least 60-80 sightings for fitting the detection function
• and at least 20 lines or points for estimating encounter rate n/L or n/k
• Whether reliable estimates can be obtained from smaller samples depends on the data
Sample size – continued

More observations are required:

- if detection function is spiked
- if population is highly aggregated
- for point transect sampling
Increasing sample size using repeat counts

If a line is sampled three times,
• pool the distance data from the three visits
• enter survey effort as three times the line length.

If a point is sampled three times,
• enter survey effort as 3.
Determining total line length

Pilot study: n_0 animals (or clusters) counted from lines totalling L_0 in length.

Total line length required in main survey is

$$L = \left(\frac{q}{\left[cv_t(\hat{D}) \right]^2} \right) \times \frac{L_0}{n_0}$$

Where $cv_t(\hat{D})$ is the target cv (e.g. 10% is 0.1) and...
Determining line length (cont)

\[q \text{ is approximately } \frac{V(n)}{n} + \frac{nV[\hat{f}(0)]}{[\hat{f}(0)]^2} \]

Pilot studies are typically too small to estimate \(q \). If past similar data sets are not available, assume \(q = 3 \).
Line length example

A pilot study yields $n_0 = 20$ observations from lines of total length 5km. We require a CV of 10%, and assume $q = 3$.

$$L = \frac{3}{0.1^2} \times \frac{5}{20} = 75\text{km}$$

Estimated sample size is

$$n = L \times \frac{n_0}{L_0} = 75 \times \frac{20}{5} = 300$$
Determining line length (cont)

If pilot survey is sufficiently large, calculate line length for main survey as

\[L = \frac{L_0 [cv(\hat{D}_0)]^2}{[cv_t(\hat{D})]^2} \]

where

- \(cv(\hat{D}_0) \) is the cv of estimated density obtained from the pilot survey, and
- \(L \) is total line length in the main survey.
Point transects: number of points

or

\[k = \left(\frac{q}{[cv_t(\hat{D})]^2} \right) \times \frac{k_0}{n_0} \]

\[k = \frac{k_0 [cv(\hat{D}_0)]^2}{[cv_t(\hat{D})]^2} \]

where \(k_0 \) points in the pilot survey yielded \(n_0 \) detections, or estimated density of \(\hat{D}_0 \)