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Schedule
Introduction to Distance Sampling

16th August – 19th August 2016

Tuesday 16th August
08:45 Registration

09:00 Participant introductions
Review of: methods for estimating animal abundance;
distance sampling; choosing a detection function

10:45 Coffee/tea

11:00 Review of: goodness of fit; distance sampling assumptions
Analysis of line transect data in Distance
Computer session: line transect exercises

12:45 Lunch

13:45 Precision of distance sampling estimates
Computer session: assessing precision

15:45 Coffee/tea

16:00 Demonstration of data import
Participants’ data

18:00 Adjourn

Wednesday 17th August
09:00 Point transect sampling

Computer session: point transect exercises

10:45 Coffee/tea

11:00 Survey design
Participants’ data

12:45 Lunch

13:45 Automated survey design
Computer session: automated survey design

15:45 Coffee/tea

16:00 Stratification and cluster size complications
Computer session: choice of exercises
Participants’ data

18:00 Adjourn



Thursday 18th August
09:00 Fitting detection function with covariates

Computer session: covariates in detection function

10:45 Coffee/tea

11:00 Participants’ data
Indirect survey methods and use of multipliers

12:45 Lunch

14:00 Computer session: multipliers
Participants’ data

15:45 Coffee/tea

16:00 Participants’ data

18:00 Adjourn

Friday 19th August
09:00 Field methods

Description of reprints distributed to participants

10:45 Coffee/tea

11:00 Participants’ data
Special topics

12:45 Lunch

14:00 Participants’ data

15:45 Coffee/tea

16:00 Participants’ data

16:45 Workshop summary

17:00 Workshop closes



Introduction to
Distance Sampling

• Overview of wildlife population assessment methods

• Plot sampling

• Distance sampling

– Basic idea

– Types of distance sampling

Wildlife Population Assessment

• How many are there?

• What are their trends?

• Why?

– Vital rates (survival, fecundity, etc)

• What might happen if…?

– Scenario planning

– Risk assessment

– Decision support

Rapid assessment methods and indices

• Perhaps emphasis is just on trends

– Questionnaire surveys

• e.g. UK adder survey

– Presence/absence

• e.g. UK otter surveys

– Index methods

• e.g., Point counts for birds (US Breeding Bird Survey)

• Warning!

– For estimating trends, must assume no trend in proportion detected
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Methods of estimating abundance

• Complete census

• Plot sampling

• Distance sampling

• Mark-recapture

• Removal method

Complete census

• Let

N = population size (abundance)

A = size of study region = 5000

D = animal density = N/A

• Method: count everything!

N = 412

D = 412/5000 = 0.0824

• Rarely possible in practice! 0 20 40 60 80 100
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Plot sampling (or strip transect)

• Let

k = number of strips = 5

L = total line length = 50x5 = 250

w = the strip half-width = 1

a = area of region covered

= 2wL = 2x1x250 = 500

n = number of animals counted = 36

• From this, how do we estimate abundance? A=5000
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Intuitive estimator of abundance

• I saw 36 animals

• I covered 500/5000 = 1/10th of the study region

• So, I estimate there are 36/(1/10) = 36x10 = 360 animals

A
a

n
N ˆ

(Hat “^” means an estimate.)

a

nA
 360

500

500036





Concept – Plot sampling

• Step 1: How many in covered region, Na?

• Step 2: Given Na ,how many in study region, N

• Overall:

nNa Plot sampling:

If transects placed at random:

for strip transects

A
a

N
N aˆ

A
a

n
N ˆ

a

nA


wL

nA

2


Distance (line transect) sampling

• An extension of plot sampling
where not all animals in the
covered region are detected

• Here
w = 2 (strip can be wider, as don’t have

to see everything)

a = 1000

n = 68 (more animals seen)

• Let
Pa = proportion of animals detected

within covered region

• Imagine we know (or can
estimate)
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Introductory Distance Workshop August 2016 CREEM, Univ of St Andrews  3



Intuitive estimator of abundance

• I saw 68 animals

• The estimated proportion seen was 0.7

• So, I estimate the true number of animals in the strips was 68/0.7 = 97.1

• I covered 1000/5000 = 1/5th of the study region

• So, I estimate there are 97.1/(1/5) = 485.7 animals

A
a

P
n

N a
ˆ

ˆ 
aPa

nA
ˆ

 7.485
7.01000

500068







Concept – Distance sampling

• Step 1: How many in covered region, Na?

• Step 2: Given Na ,how many in study region, N

• Overall:

a

a P
nN ˆ

ˆ Distance sampling:

If transects placed at random:

for line transects

• So how do we estimate Pa?

A
a

N
N a

ˆ
ˆ 

A
a

P
n

N a
ˆ

ˆ 
aPa

nA
ˆ


aPwL

nA
ˆ2



Estimating Pa

Record perpendicular distance, x, from transect line to each observed object
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Estimating Pa

these animals are
estimated to have been
missed

assume see
everything at
zero distance

fr
e
q
u
e
n
c
y

if you saw everything at all distances, on
average the histogram bars should be here

perpendicular distance from line, x 2

1
2

Estimating Pa

• Area of rectangle = 12x2 = 24

• Area under curve = 0.25x(12+11.5+11+10.5+9+7+4+3) = 17

• So

aP̂
area under curve

area under rectangle

fr
e
q
u
e
n
c
y

perpendicular distance from line, x 2

1
2

7.0
24

17ˆ aP

Types of distance sampling

(not exhaustive!)
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Type of sample
Line vs. Point

Line transect Point transect
(Variable circular plot)

•

•

•

••

••

•

•

•

•

•

•

•

•

•

•

Type of distance measurement
1. Radial vs perpendicular

• For line transects, can either measure
– perpendicular distance from line to object

– radial distance and angle

• For point transects
– measure radial distance from point to object

x

r 

r

)sin(rx 

Type of distance measurement
2. Exact vs Grouped

Exact distance recorded to each object
detected

Distances recorded in intervals

Photo: Rich Guenzel
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Type of object
1. Individuals vs Clusters

Each object
detected is
a single
individual

Each object detected is a cluster of individuals

- will need to estimate expected cluster size

Photo: Ron Marlow Photo: Thomas Norris

Type of Object
2. Direct vs Indirect

Objects are animals (or plants) of interest ...

... or something they produce
(an “indirect survey”)

Another example is a cue count

Method of detection
Active vs Passive

Observers actively
search for animals and

record distances

Photo: Ullas Karanth

Photo: Steve Dawson

Animals are trapped and
generate their own
distances (“passive
distance sampling”)

84 hydrophones on sea floor of Atlantic
Undersea Test and Evaluation Center in
Bahamas. From Marques et al. (2009).
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Recap of main ideas so far
• Distance sampling is an extension of plot sampling

– In plot sampling, we see everything in the covered region

– In distance sampling, we do not see everything, and we estimate the proportion
detected,

a

nA

A
a

n
N ˆ

• How do we estimate Pa?

fr
e
q
u
e
n
c
y

x 2

line transects

strip transects

line transects

wL

nA

2


aPwL

n

A

N
D

ˆ2

ˆ
ˆ 

a

a

Pa

nA

A
a

P
n

N
ˆ

ˆ
ˆ 

aPwL

nA
ˆ2



aP̂

aP̂ area under curve
area under rectangle

wL

n

A

N
D

2

ˆ
ˆ 
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Choosing a Detection function

Overview

• Formal definition

• Criteria for a good detection function model

• Key functions and adjustment terms

• Fitting models in Distance

• Choosing the number of parameters

• Introduction to truncation

Formal definition

• The detection function describes the relationship between
distance and the probability of detection

• Formally denoted by g(x) (usually referred to as ‘g of x’)

• g(x) = the probability of detecting an animal, given that it is
at distance x from the line

• Key to the concept of distance sampling
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aP̂

g
(x

)

x w

1
.0

We assume
g(0) = 1

Histogram bars are scaled

area under curve
area under rectangle w

dxxg
w


 0

)(ˆ

The detection function, g(x)

Modelling g(x)

• g(x) represents the underlying relationship between detection
probability and distance

• However, the true form of g(x) is unknown to us

• We need to estimate g(x) by fitting a model to our data

• i.e. we need to find a curve that will approximate the underlying
relationship

Criteria for robust estimation

• Four main criteria for a good model:

1. Model robustness – use a model that will fit a wide variety of
plausible shapes for g(x)

2. Shape criterion – use a model with a ‘shoulder’ – i.e. g'(0)=0

3. Pooling robustness – use a model for the average detection
function, even when many factors affect detectability

4. Estimator efficiency – use a model that will lead to a precise
estimator of density
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Key functions

• The first step in constructing a model for g(x) is to choose
a key function

• This determines the basic model shape

• Four key functions available in Distance:

1. Uniform

2. Half normal

3. Hazard rate

4. Negative exponential

• Model formula:

• Parameters = 0

• Shape criterion?

Yes

• Model robust?

No

Key functions (cont.)

wx1,=g(x) 

Key functions (cont.)

• Model formula:

• Parameters = 1

• Shape criterion?

Yes

• Model robust?

No

wx,
2

x-
=g(x)

2

2











exp
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Key functions (cont.)

• Model formula:

• Parameters = 2

• Shape criterion?

Yes

• Model robust?

Yes

wx,
x

--1=g(x)

-


























exp

Key functions (cont.)

• Model formula:

• Parameters = 1

• Shape criterion?

No

• Model robust?

No

wx,
x-

=g(x) 









exp

Key functions in Distance
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Adjustment terms

• Models can be made more robust by adding a series of
adjustment terms to the key function

• Key function × (1 + Series)

• Series = α1×term1 + α2×term2 + ….. etc.

• The αi parameters must be estimated

• Resulting curve model is scaled so that g(0)=1

• The number of adjustment terms needs to be chosen

Adjustment terms

• Distance allows the selection of three types of series (one type
per model)

Key function Series adjustment

Uniform* Cosine*

Half normal† Hermite polynomial†

Hazard rate Simple polynomial

Negative exponential

How adjustment terms work

• E.g. Cosine series (for different values of α)

• (1st order only used for uniform)
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How adjustment terms work

• E.g. Uniform + 1 Cosine adjustment term:

• The effect of the adjustment terms depends on the value of their
parameters

How adjustment terms work

• E.g. Half normal + 1 or 2 Cosine terms:

Adjustments in Distance
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Adjustments in Distance

Adjustment terms – how many?

Half normal Half normal Half normal

0 adjustment terms 1 adjustment term 5 adjustment terms

1 parameter 2 parameters 6 parameters
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%6.11)ˆ( aPCV

63.0ˆ aP

%9.19)ˆ( aPCV

65.0ˆ aP

%8.5)ˆ( aPCV

Note: There is a monotonicity constraint in Distance that is switched on by default to prevent detection functions from increasing. The constraint had to be turned off to produce
the third plot. The third plot is for demonstration only – it would not be a good detection function to choose (unless there was a biological reason why detection probability would
increase at those distances).

How many parameters?

• Models with too few parameters will not be flexible enough to
describe the underlying relationship

• Adding parameters will improve the fit

• But models with too many parameters will be too flexible and will
also describe the random noise in the data

• We generally require models with an intermediate number of
parameters
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• This problem can also be expressed as a trade-off between bias
and variance

• Models with too few parameters tend to produce estimates with
low variance and high bias

• Models with too many parameters tend to produce estimates with
low bias and high variance (note the increasing CV for the
estimate of Pa on the previous slide)

How many parameters?

B
ia

s

V
a
ria

n
c
e

Number of parameters in model

How many parameters?

• Need an objective way of choosing the ‘best’ model…

• Need to choose the value of w (right truncation)

• Large distances contribute little to estimating the shape of g(x) at
small distances (i.e. the shoulder) and may lead to poor fit and high
variance

• Typically we might truncate around 5% of observation for line
transects (perhaps nearer 10% for point transects)

• Can truncate in the field or at the analysis stage

Truncation
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Three more ways to think about
line transects

1. The detection function, g(x)

• g(x) = probability of detecting an animal, given that it is at distance x
from the line

aP̂

g
(x

)

x w

1
.0

We assume
g(0) = 1

Note: histogram bars scaled

area under curve
area under rectangle w

dxxg
w





1

)(ˆ
0

2. Effective strip (half) width, μ

aPwL

nA
N

ˆ2
ˆ 

L

nA
N

̂2
ˆ 

aP̂

• Instead of a line transect out to w, where proportion Pa objects are seen, think of a strip transect out to
some distance μ.

μ

g(x)

x
w

1
.0

Line transect out to w Strip transect out to μ

The ESW, μ, is the distance at which as many objects
are seen beyond μ as are missed within μ

Area
covered

Area
effectively
covered

w

dxxg
w


 0

)(ˆ

w

μ̂
area under curve

area under rectangle
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3. The probability density function, f(x)

• f(x)dx = probability of observing an animal between distance x and x+dx, given it
was observed somewhere in (0,w)

• f(x) is called the probability density function (pdf) of the observed distances

• Because observations are between 0 and w, the area under f(x) is 1.0

f(
x)

x w

Histogram bars are scaled so that
area under histogram is 1.

Area under f(x) is 1

 
w

dxxf
0

1)(

Why is f(x) useful?
1. Useful for point transects, as it gives the expected distribution of detection distances

True distribution of animals

Detection function, g(x)

Observed distribution, f(x)

Line transect Point transect
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see lecture on point
transects, tomorrow

Why is f(x) useful?
2. Gives another way to estimate Pa

– Lots of statistical machinery to fit pdfs, so this is the way Distance does it.

f(
x)

x w

f(0)

Question:
How are f(0)

and μ related?

aPwL

nA
N

ˆ2
ˆ 











wf
wL

nA

)0(ˆ
12 L

fnA

2

)0(ˆ
aP̂ area under curve

area under rectangle wf )0(ˆ
1


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Formulae – line transects

Three ways to think about line transects

aPwL

nA
N

ˆ2
ˆ 

1. Proportion seen or average probability of detection in covered region, Pa

2. Effective strip (half-)width, ESW, μ.

3. Pdf of observed distances, f(x), evaluated at 0 distance

aPwL

n
D

ˆ2
ˆ 

w
Pa



L

nA
N

̂2
ˆ 

L

n
D

̂2
ˆ 

L

Afn
N

2

)0(ˆˆ 
L

fn
D

2

)0(ˆˆ 


1)0( f

Which method when?

• Strip transects
– Populations that occur in large, loose clusters (e.g. walruses)

– Stationary objects, at high density, and easily detected

• Line transects

– Sparsely distributed populations for which sampling needs to be efficient (e.g. whales, deer)

– Populations that occur in well-defined clusters, and at low or medium cluster density (e.g. dolphin
or fish schools)

– Populations that are detected through a flushing response (e.g. grouse, hares)

• Point transects

– Populations at high density, especially if surveys are multi-species (e.g. songbirds)

– Populations that occur in patchy habitat

– Populations that occur in difficult terrain, or on land where access to walk predetermined lines is
problematic (e.g. bird populations in rain forest or on arable farmland)

Notation – line transects

• Known constants and data:

k = number of lines

lj = length of jth line, j=1,...,k

L = Σlj = total line length

n = number of animals or clusters detected

xi = distance of ith detected animal or cluster from the line, i=1,...,n

w = truncation distance for x

A = size of region of interest

a = area of “covered” region = 2wL

si = size of ith detected cluster, i=1,...,n
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Notation – line transects

• Parameters and functions:

N = population size / abundance of animals

Ns = abundance of clusters

D = density = animals per unit area = N/A

Ds = density of clusters

g(x) = detection function

f(x) = probability density function (pdf) of observed distances

f(0) = f(x) evaluated at 0 distance

μ = effective strip (half-)width

Pa = probability of detecting an animal or cluster given it is in the covered area a

E(s) = mean size of clusters in the population
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• Likelihood

• AIC

• Absolute measures of model fit

Assessment of model performance

Likelihood

xi = distance of ith detected animal from the line.

)(...)()( 21 ni

n

1=i

xfxfxf)xf(=L 

f(x) = probability density function of x

f(x) dx = Pr (animal was between x and x+dx from the line, given it was detected
between 0 and w) for small dx

When distances are exact, the likelihood is given by

We fit f(x) by finding the values for the parameters of f(x) (or equivalently g(x))
that maximize L (or loge(L) ).

Akaike’s Information Criterion

AIC = -2loge(L) + 2q

L is the maximized likelihood (evaluated at the maximum likelihood estimates
of the model parameters)

and q is the number of parameters in the model.

• Models need not be special cases of one another

• Select the model with smallest AIC

• Gives a relative measure of fit
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Limitations of AIC

Cannot be used to select between models when:

• sample size n differs

• truncation distance w differs

• data are grouped, and cutpoints differ

• data are grouped in one analysis and ungrouped in the other

Goodness-of-Fit

• Chi-squared test for grouped (interval) data; if data are
exact, we must specify interval cutpoints for this test

• Q-Q plots and related tests for exact data

Define u distance intervals, with ni detections in interval i, i = 1, ..., u.

Then

where

Chi-squared tests






ˆ

ˆ

i

2
ii

u

1=i

2

n

)n-n(
=

n=n i

i


and is the proportion of the area under the estimated pdf, , that
lies in interval i.

If the model is ‘correct’:

q = no. of parameters

̂ i (x)f̂


2

1-q-u

2 ~
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Chaffinch line transect data

0.0
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Perpendicular distance in meters

χ2 goodness-of-fit test

Cell Cut Observed Expected Chi-square
i Points Values Values Values

-----------------------------------------------------------------
1 0.000 12.5 16 15.32 0.030
2 12.5 22.5 11 11.63 0.034
3 22.5 32.5 11 10.62 0.013
4 32.5 42.5 8 9.33 0.189
5 42.5 52.5 9 7.87 0.164
6 52.5 62.5 7 6.37 0.062
7 62.5 77.5 3 6.96 2.253
8 77.5 95.0 8 4.91 1.953

-----------------------------------------------------------------
Total Chi-square value = 4.6970 Degrees of Freedom = 6.00

Probability of a greater chi-square value, P = 0.58322

The program has limited capability for pooling. The user should
judge the necessity for pooling and if necessary, do pooling by hand.

Q-Q Plots and Related Tests
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Introductory Distance Workshop August 2016 CREEM, Univ of St Andrews  23



1
0

1/2 5/6

1

0

5/6

1/2

Observed fraction of data xi

E
xp

e
c
te

d
(f

it
te

d
)

fr
a
c
ti
o
n

o
f
d
a
ta

<
=

x i

F
it
te

d
C

u
m

u
la

ti
v
e

D
is

tr
ib

u
ti
o
n

F
u
n
c
ti
o
n

(C
D

F
)

Empirical Distribution Function (EDF)



Example: Rounding to zero
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Kolmogorov-Smirnov test
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Uses biggest difference

Cramér-von Mises test
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Uses sum of all squared differences

(Can use Weighted sum)

Chaffinch line transect Q-Q plot
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Empirical distribution function
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K-S test and C-von M test

Kolmogorov-Smirnov test
-----------------------

D_n = 0.0573 p = 0.9703

Cramer-von Mises family tests
-----------------------------

W-sq (uniform weighting) = 0.0368 0.900 < p <= 1.000
Relevant critical values:

W-sq crit(alpha=0.900) = 0.0000

C-sq (cosine weighting) = 0.0257 0.900 < p <= 1.000
Relevant critical values:

C-sq crit(alpha=0.900) = 0.0000

Q-Q Plot Summary

• Q-Q plots show goodness-of-fit at “high resolution” – without
requiring grouping into intervals

• Kolmogorov-Smirnov test and Cramér-von Mises test are
goodness-of-fit tests that do not require grouping

• Cramér-von Mises test can be weighted, to give higher
weight to x near zero
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Making Distance Sampling Work

• Assumptions and effect of violation

• Reliable distance sampling

• Pooling robustness

• Examples of imperfect data

• Analysis hints

• Chapter 2 of Introductory book

Recap of distance sampling

• There are two stages to estimating abundance

– Stage 1: given n, how many objects are in the surveyed/covered region (of size a), Na

• Need to estimate Pa (or f(0) or ESW, etc.)

– Stage 2: given , how many objects are in study region (of size A), N

• ‘Scale up’ from what we see in the survey region to the whole study region

a
a P

nN ˆ
ˆ 

A
a

N
N a

ˆ
ˆ 

aN̂

Assumptions for estimating Na (stage 1)

1. Animals distributed independently of line or point
– This ensures the true distribution of animals with respect to the line or point is known

– Violated by non-random line/point placement

– Substantial violation can produce substantial bias (e.g. roadside counts)
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e.g. for line transects
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Assumptions for estimating Na (stage 1)

2. All animals on the line or point are detected i.e. g(0)=1
– It is a critical assumption - violation causes negative bias

e.g. if g(0)=0.8, estimates of N are 80% of true N on average

Images courtesy of FreeDigitalPhotos.net

Assumptions for estimating Na (stage 1)

3. Observation process is a ‘snapshot’

Other ways to phrase this:

• Observers are moving much faster than the animals

• Animals do not move before they can be detected

Problems of independent/non-responsive movement

• An animal moving independently of the observer (compared to moving in response to the
observer) produces positive bias; size of bias depends on relative rate of movement of
observer and animal, and type of survey.

• Point transect methods in particular need to use ‘snapshot’ method.

Assumptions for estimating Na (stage 1)

3. Observation process is a ‘snapshot’ (continued…)

Problems of responsive movement

• Responsive movement can cause large bias

• It can occur within a single line/point or between lines/points

• If animals are ‘driven’ from one line/point to the next ahead of the observer, positive bias
will result.

• Note: movement independent of observer outwith ‘snapshot’ is fine – in this case, the
same animal can be detected on multiple lines/transects
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Assumptions for estimating Na (stage 1)

4. Distances are measured accurately

– Random errors cause bias.

• Bias is generally small for line transect estimators,

• Can be large for point transect estimators.

• Both are sensitive to systematic bias and to rounding to 0 distance (or angle).

– Can use grouped data collection.

5. Detections are independent

– Violation has little effect. (Model selection methods for g(x), such as AIC, are
somewhat affected)

Assumptions for estimating N given Na (stage 2)

1. Lines or points are located according to a survey design with
appropriate randomization

– We use properties of the survey design to extrapolate from the surveyed/covered
region to the study region (‘design-based’)

– Non-random survey design means density in surveyed/covered region may not
be representative of density in study region. Also variance may be biased.

Image courtesy of FreeDigitalPhotos.net
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Reliable distance sampling (1)

1. Reliable estimation of Pa (or f(0) or ESW, etc)
– In addition to the assumptions, we would like:

SHAPE CRITERION
Detection function should have
a ‘shoulder’ (i.e. g'(0)=0)

Data that have a wide shoulder are preferable

A wide shoulder makes it
easier to estimate area under
rectangle (or f(0), etc)
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(1) Reliable estimation of Pa

Good field methods will avoid a ‘spike’ like this

Avoid a) rounding distances (and angles) to zero,
b) ‘guarding the trackline’

(1) Reliable estimation of Pa (cont.)
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Flexible detection function model can fit the data (see later)

Sample size of observations (~60-80)
- less for detection functions with ‘easy’ shapes
- more for point transects and ‘difficult shapes’.

Reliable distance sampling (2)

2. Reliable estimation of N from Na

– In addition to the assumption of randomized design, we would like a ‘large’ sample of lines or
points (20 or more), evenly distributed through the study region

5k

see lecture on survey design

e.g. surveys of
tiger prey in India

Photos: Ullas Karanth
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Pooling robustness
• Individuals can have quite different detection functions, but this produces little bias (up to a point!)
• ‘Pooling robustness’ = robust to pooling of multiple detection functions
• e.g. Simulation study (in progress!) Truth = 1000 animals
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Scenario 1: animals have a gamma distribution of detection functions
between min and max shown.

Mean estimate from simulation: 984 animals (SE 2.3). Bias -1.6%

Scenario 2: half of animals have max detection function, half have
minimum.

Mean estimate from simulation: 976 animals (SE 2.7). Bias -2.4%

Non-ideal data

Spiked line transect data
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Analysis hints

• See Section 2.5 of introductory distance sampling book

• It is not a cookbook!
– Do not simply use the programme defaults in Distance!

The art of model selection

Introductory Distance Workshop August 2016 CREEM, Univ of St Andrews  31



Analysis hints (1)

Stage 1: Exploratory data analysis

– Goal is to understand patterns in distance data, and make preliminary decisions
about analysis

– It is never too early to start looking at the data (can then rectify problems)

– Exact data: examine QQ-plots and histograms with lots of cutpoints (in Distance,
use Model Definition | Detection Function | Diagnostics)

– Carry out preliminary analysis with a simple model (e.g. half normal, no
adjustments). Examine histograms to assess if assumptions are violated

– Make preliminary decisions about truncation and whether to group exact data
(Use Data Filter | Intervals)

– For clustered populations, look for evidence of size bias (see Clustered
Populations lecture).

Analysis hints (2)

Stage 2: Model selection

– Decide whether to analyse the data as grouped or ungrouped

– Select appropriate truncation distance.

– Choose cutpoints if using grouped data.

– Select and fit a small number of key/adjustment combinations

– Check histograms, goodness-of-fit, AIC and summary tables and choose a
model

– This is an iterative process – more exploratory work may be required.

– Check evidence of size-bias if population is in clusters

Analysis hints (3)

Stage 3: Final analysis and inference

– Select best model, or

– Perhaps use model averaging - bootstrap with more than one model
selected if model choice is uncertain and influential

– Extract summary analyses and histograms for reporting
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Measures of Precision

Overview

• How to quantify uncertainty

• Why variance is important

• Components of variation in Distance sampling

• Controlling variance

• Estimating variance

• Confidence Intervals

• References: Section 3.6 of introductory book
(also see paper by Fewster et al. 2009)

How do estimates behave?

• Consider an artificial population

– D = 500 per unit2 (no density
gradient)

– Design: 5 transects equally-spaced
(w=0.05)

• Results:

= 140

= 34.6

= 484.4D̂

)0(f̂

n
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How do estimates behave?

• Consider a duplicate survey

– Same population model

– Same survey design (with a new
random start point)

• Results:

= 139

= 37.6

= 522.1D̂

)0(f̂

n

How do estimates behave?

• Imagine repeating this process over and over, using the
same survey design and a population drawn from the same
density model

• Each survey will yield:

– A different value for

– A different value for

– A different value for D̂

)0(f̂

n

• What happens if we repeat this simulated survey 10,000 times?

• We end up with distributions for , and

How do estimates behave?

D̂)0(f̂n
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How do estimates behave?

• We are interested in the hypothetical long-run behaviour of
our estimator

• How variable are the estimates?

– E.g. what is the variance of the distribution for ?

• What is the average value of the estimates?

– E.g. is the distribution for centred on the truth?

L

fn
D

2

)0(ˆˆ 

D̂

D̂

Low precision = high variance = high uncertainty
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Bias vs. Variance

Quantifying uncertainty

• Different ways of measuring uncertainty:

1. Variance = the average squared difference from the mean (the inverse of
precision)

– If the estimator for D is unbiased, then

2. Standard error = the standard deviation of an estimator (i.e. the square root
of estimator variance)

])ˆ[(]ˆ[ 2DDEDVar 

]ˆ[]ˆ[ DVarDSe 
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Quantifying uncertainty

3. Coefficient of Variation (CV) = the standard error dived by the mean (i.e. a
standardised version of the standard error)

– Useful for comparing variances when the scale and/or the units of
measurement differ

– E.g. consider two variables: X has mean = 100 and variance = 400,
Y has mean = 1 and variance = 0.04

]ˆ[

]ˆ[
]ˆ[

DE

DSe
DCV 

%202.0
100

20

100

400
][ XCV %202.0

100

20

1

04.0
][ YCV

Quantifying uncertainty

4. Confidence Interval (CI) = a range of plausible values for the truth

– Calculations are based on variance

– Different ways to calculate CIs, depending on the data, e.g.

• Normal

• Lognormal (available in Distance)

• Bootstrap (available in Distance)

– More about CIs later…

Why is variance important?

• In a real survey, we use an estimator and the survey data to produce
a single estimate for D

• If the estimator variance is low, then individual estimates are more
likely to be close to the truth (assuming low bias)

• If estimator variance is high, then individual estimates are more likely
to be far from the truth

• For reliable results, we want estimators with LOW variance (and
low bias!)
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• We can break down the familiar distance sampling density estimator
(for line transects with no clusters) into three components:

Variance by components

)0(ˆ
2

1

2

)0(ˆˆ f
L

n

L

fn
D 

Constant
(no variance)

Detection
function

Encounter rate

• We can calculate variance measures separately for each component

Variance by components

Mean 26.1 38.5 500.6

Se 2.27 2.71 56.34

CV 8.69 % 7.04 % 11.26 %

)0(f̂ D̂Ln /

• The variance of is affected by the variance of its components

• If the variance of is high, then the variance of will be high and
the variance of will be high

• Similarly, if the variance of is high then the variance of will be
high

• So for reliable estimates, we want and to be low

Variance by components

)]0(ˆ[ fVar]/[ LnVar

)0(f̂

D̂

D̂

D̂

Ln /n
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Point Standard Percent Coef. 95% Percent

Parameter Estimate Error of Variation Confidence Interval

--------- ----------- ----------- -------------- ----------------------

f(0) 1.5726 0.19139 12.17 1.2304 2.0102

p 0.42391 0.51589E-01 12.17 0.33165 0.54185

ESW 0.63587 0.77383E-01 12.17 0.49747 0.81277

n/L 0.80579E-01 0.25990E-01 32.25 0.40601E-01 0.15992

DS 0.63361E-01 0.21843E-01 34.47 0.31088E-01 0.12914

E(S) 2.0143 0.20292 10.07 1.6433 2.4692

D 0.12763 0.45838E-01 35.92 0.61445E-01 0.26510

N 10849. 3896.4 35.92 5223.0 22534.

Variance by components

• Distance provides several variance measures for each component

Encounter rate variance

• The encounter rate = n/L = the number of detections per unit of
distance

• The variance of n/L is related to the variance of n, and therefore to the

variances of counts for individual transects

• Therefore, if counts from individual transects are highly variable the

variance of n/L will also be high

   knVarnVarnVar  ...][ 1

assumes
independence

Controlling variance

• We can use this knowledge of encounter rate variance to help design
good surveys

• Three main ways we can reduce encounter rate variance:

– Use systematic survey designs

– Run transects parallel to density gradients

– Use designs with several transects
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Estimating variance – Analytic

• We can describe the relationship between the variance of and the
variance of its components more formally using a useful
approximation known as the Delta method

• Rule: when two or more components are multiplied together,
squared CVs add

   2
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Estimating variance – Analytic

• To estimate we need to use data from the individual lines
(or points)

• A minimum of 20 replicate lines (or points) is recommended for
obtaining a reliable estimate of encounter rate variance

• The (new improved) formula used in Distance:
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Estimating variance – Analytic
Point Standard Percent Coef. 95% Percent

Parameter Estimate Error of Variation Confidence Interval
--------- ----------- ----------- -------------- ----------------------

f(0) 1.5726 0.19139 12.17 1.2304 2.0102
p 0.42391 0.51589E-01 12.17 0.33165 0.54185
ESW 0.63587 0.77383E-01 12.17 0.49747 0.81277
n/L 0.80579E-01 0.25990E-01 32.25 0.40601E-01 0.15992
DS 0.63361E-01 0.21843E-01 34.47 0.31088E-01 0.12914
E(S) 2.0143 0.20292 10.07 1.6433 2.4692
D 0.12763 0.45838E-01 35.92 0.61445E-01 0.26510
N 10849. 3896.4 35.92 5223.0 22534.

--------- ----------- ----------- -------------- ----------------------

Measurement Units
---------------------------------
Density: Numbers/Sq. nautical mi

ESW: nautical miles

Component Percentages of Var(D)
-------------------------------
Detection probability : 11.5
Encounter rate : 80.7
Cluster size : 7.9

p and ESW are derived
from 1/f(0), so these
three share the same CV

Similarly, N and D
always have the
same CV
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Estimating variance – Analytic

• To find the relative contributions of each component we take the
ratio of squared CVs

• E.g.

Component

Typical values

Line Point

Encounter rate 70-80% 40-50%

Detection function <30% >50%

 
 


2

2

)ˆ(

))0(ˆ(
%100

Dcv

fcv The percentage relative
contribution made by f(0)

Estimating variance – Analytic

Point Standard Percent Coef. 95% Percent
Parameter Estimate Error of Variation Confidence Interval
--------- ----------- ----------- -------------- ----------------------

f(0) 1.5726 0.19139 12.17 1.2304 2.0102
p 0.42391 0.51589E-01 12.17 0.33165 0.54185
ESW 0.63587 0.77383E-01 12.17 0.49747 0.81277
n/L 0.80579E-01 0.25990E-01 32.25 0.40601E-01 0.15992
DS 0.63361E-01 0.21843E-01 34.47 0.31088E-01 0.12914
E(S) 2.0143 0.20292 10.07 1.6433 2.4692
D 0.12763 0.45838E-01 35.92 0.61445E-01 0.26510
N 10849. 3896.4 35.92 5223.0 22534.

--------- ----------- ----------- -------------- ----------------------

Measurement Units
---------------------------------
Density: Numbers/Sq. nautical mi

ESW: nautical miles

Component Percentages of Var(D)
-------------------------------
Detection probability : 11.5
Encounter rate : 80.7
Cluster size : 7.9

12.172 / 35.922 x 100%

32.252 / 35.922 x 100%

Estimating variance – Bootstrap

• Works well if the original sample is large and representative

• The distribution of density estimates approximates the true distribution
that we would (theoretically) get from duplicate surveys

• The variance of the bootstrap estimates can be used as an estimate of
the true variance

• In Distance we resample the individual transects
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Estimating variance – Bootstrap

• For example, consider a survey with 12 replicate lines

• Bootstrap sample 1:
• Transects: 5, 12, 1, 7, 6, 11, 7, 6, 9, 7, 11, 2
• Density estimate = D1

• Bootstrap sample 2:
• Transects: 3, 4, 9, 1, 12, 7, 8, 11, 1, 3, 2, 12
• Density estimate = D2

• Do this B times and use the variance of the B density estimates as an
estimate of )ˆvar(D

Estimating variance – Bootstrap

The usual option
(samples = transects)

The number of
bootstrap samples to
use (test on a small
number first to ensure
all is properly set up)

Confidence Intervals

• Confidence intervals (CIs) give us a range of plausible values for
the truth

• Constructed using data from a single sample

• If we were to carry out multiple surveys and construct 95% CIs from
each survey, we would expect 95% of those CIs to contain the true
value

• To calculate CIs we need to know the shape of the distribution of
estimates
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• Two choices:

1. Normal

– symmetrical

– easy to use

– allows negative values

1. Lognormal

– asymmetric (skewed)

– trickier to use

– typically higher interval limits

– does not allows negative values

Confidence Intervals - Analytic

• Distance uses 95% lognormal CIs

Confidence Intervals - Analytic

Point Standard Percent Coef. 95% Percent
Parameter Estimate Error of Variation Confidence Interval
--------- ----------- ----------- -------------- ----------------------

f(0) 1.5726 0.19139 12.17 1.2304 2.0102
p 0.42391 0.51589E-01 12.17 0.33165 0.54185
ESW 0.63587 0.77383E-01 12.17 0.49747 0.81277
n/L 0.80579E-01 0.25990E-01 32.25 0.40601E-01 0.15992
DS 0.63361E-01 0.21843E-01 34.47 0.31088E-01 0.12914
E(S) 2.0143 0.20292 10.07 1.6433 2.4692
D 0.12763 0.45838E-01 35.92 0.61445E-01 0.26510
N 10849. 3896.4 35.92 5223.0 22534.

--------- ----------- ----------- -------------- ----------------------


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)ˆ(1ln96.1exp DcvC

• We can use the bootstrap estimates to construct CIs for the true
density in two ways:

– Parametric

Use the lognormal CI method with the bootstrap estimate of variance instead
of the analytic estimate

– Non-parametric

Place the bootstrap estimates in order of increasing size and use percentiles
as the CI limits (e.g. for a 95% CI using 999 bootstrap estimates, take the
25th estimate as the lower limit and the 975 th estimate as the upper limit)

Confidence Intervals – Bootstrap
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• Both options are provided in Distance

Confidence Intervals – Bootstrap

Pooled Estimates:
Estimate %CV # df 95% Confidence Interval
--------------------------------------------------------

DS 0.20906E-01 38.14 999 19.43 0.96777E-02 0.45162E-01
0.12166E-01 0.41557E-01

D 0.39125E-01 42.24 999 23.93 0.16953E-01 0.90294E-01
0.22020E-01 0.81797E-01

N 27987. 42.24 999 23.93 12127. 64589.
15752. 58511.

Note: Confidence interval 1 uses bootstrap SE and log-normal 95% intervals.
Interval 2 is the 2.5% and 97.5% quantiles of the bootstrap estimates.

Option 1 (parametric)

Option 2 (non-parametric)

Producing a better estimate of variance
when systematic samplers are used

• Fewster, RM, Buckland, ST, Burnham, KP, Borchers, DL, Jupp, PE, Laake, JL, and
Thomas, L. 2009. Estimating the encounter rate in distance sampling. Biometrics
65: 225-236.

Systematic samples

Problem:

Systematic
designs give
the best
variance, but
the worst
variance
estimation!

Estimates of encounter
rate variance assume

random lines

But it is better (lower
variance) to use
systematic lines

No unbiased estimator exists for estimating variance from a
single systematic sample

Systematic designs are best, but
we might overestimate the

variance.
Use stratification to improve

variance estimation for systematic
designs
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Systematic samples advice

Variance estimation based on random
lines will not be perfect, but adequate

1. Usually, do nothing!
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If there are strong trends, variance might be
significantly overestimated

High density
on short lines

Low density on
long lines

Worst
case!

Post-stratification can give much better variance estimates

Group lines into
small strata

Two lines per stratum, or
at most three
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Post-stratification can give much better estimates of

variance

Trends within strata are minor;
Estimate encounter rate

variance separately for each
stratum

Pool by-stratum
variance estimates
together, weighted
by Total Effort in

Stratum


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In Distance 7:
Click on the “Advanced…” tab

Choose this option

Successive pairs of lines will be grouped together, according to their ID in the
sample layer (1 & 2, 3 & 4, etc). (If there are an odd number of lines, the last 3 will
be grouped.)

Overlapping strata are even better, as you get a larger
sample size of post-strata

Choose this
option
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Systematic point transect surveys

Less of an issue (no problem of different line lengths), but
can similarly group into strata of two or three adjacent
points for encounter rate variance if required.

However, it’s harder to do in Distance – need to manually post-
stratify.

Can only do non-overlapping post-stratification this way.

Add new field VarGroup into the Point
transect layer (i.e., the sample layer)

Enter values into
VarGroup so that it

groups together points 1
and 2, 3 and 4, etc
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Post-stratify on
VarGroup

Encounter rate
estimated at

Stratum level,
everything else

Global.
Global density is
Mean weighted

by Effort.
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Point transect sampling

×
×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

•

•

•

•

•

•

•

•

•

•

•

Random points or systematic
grid of points randomly
placed; observer records
distance to any detected
animals

Point transect sampling

For k point counts with certain detection to distance w:

How does this change if detection is uncertain?

2wk

n
D̂ 

Effective radius and effective area

= effective radius

= effective area

w

2 

2w



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Covered area:
2wka 

Proportion detected:
2

2

2

2

wwk

k
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
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
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Estimated density:
2222 ˆ/ˆˆ
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Area and hence number of birds increase
linearly with distance:

1
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Probability density function

f(r)

freq

w r

(scaled)
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Detection function
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The effective radius …

… is the distance such that as many birds beyond are
detected as are missed within of the point.






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f(r)

r
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Area under curve:
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Notation: point transects

Known constants and data:

• k = number of points

• n = no. of animals or clusters detected

• ri = distance of ith detected animal or cluster from the point,
i = 1, ..., n

• w = truncation distance for r

• A= size of region of interest

• a = size of covered region = kπw2

• si = size of ith detected cluster, i = 1, …, n

Point transect notation (cont)

Functions:

• g(r) = detection function

• f(r) = probability density function (pdf) of detection distances

• h(r) = f´(r) = slope of pdf f(r)

• h(0) = slope of pdf evaluated at r=0
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Point transect notation (cont)

Parameters:

• D = density = animals per unit area

• Ds = density of clusters

• N = population size = D·A

• = effective radius =

• = effective area (per point) =

• Pa = prob. of detection of animal or cluster in the covered
area a





)0(/2 h

)0(/2 h

Comparative studya

1. Point transect, 5-minute counts (9.8 hrs)

2. Point transect, snapshot method (8.4 hrs)

3. Cue counting, 5 mins per point (10.0 hrs)

4. Line transect sampling (7.9 hrs)

5. Territory mapping

aBuckland, S.T. 2006. Point-transect surveys for songbirds: robust methodologies. The Auk 123:345-357.

Focal species in Montrave study

• Chaffinch
Fringilla coelebs

• Great tit
Parus major

• Robin
Erithacus rubecula

• Wren
Troglodytes
troglodytes
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Study area, Montrave Estate

Parkland and
mixed woodland

33.2 ha
k = 32 points

The data

Chaffinch Great tit Robin Wren

M1 (w=110m) n: 74 44 57 132

M2 (w=110m) n: 63 18 50 117

M3 (w=92.5m) n: 627 177 785 765

Cue rate:
Sample size 33 12 26 43
Mean 7.9 8.2 17.9 7.3

M4 (w=95m) n: 73 32 80 155

M5 territories: 25 7 28 43

Example analyses: chaffinch

0
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0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Empirical distribution function
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K-S and C-von M tests
Kolmogorov-Smirnov test
-----------------------

D_n = 0.0978 p = 0.4205

Cramer-von Mises family tests
-----------------------------

W-sq (uniform weighting) = 0.1194 0.400 < p <= 0.500
Relevant critical values:

W-sq crit(alpha=0.500) = 0.1188
W-sq crit(alpha=0.400) = 0.1464

C-sq (cosine weighting) = 0.0705 0.500 < p <= 0.600
Relevant critical values:

C-sq crit(alpha=0.600) = 0.0623
C-sq crit(alpha=0.500) = 0.0770

Detection function
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Chi-square gof test

Cell Cut Observed Expected Chi-square
i Points Values Values Values

-----------------------------------------------------------------
1 0.000 17.5 4 5.36 0.345
2 17.5 27.5 6 7.29 0.229
3 27.5 37.5 9 9.42 0.019
4 37.5 47.5 10 10.57 0.031
5 47.5 57.5 11 10.77 0.005
6 57.5 67.5 8 10.15 0.454
7 67.5 77.5 15 8.95 4.096
8 77.5 110. 18 18.50 0.013

-----------------------------------------------------------------
Total Chi-square value = 5.1918 Degrees of Freedom = 6.00

Probability of a greater chi-square value, P = 0.51946

The program has limited capability for pooling. The user should

judge the necessity for pooling and if necessary, do pooling by hand .

Estimation summary

Effort : 64.00000
# samples : 32
Width : 110.0000
# observations: 81

Model 1
Half-normal key, k(y) = Exp(-y**2/(2*A(1)**2))

Point Standard Percent Coef. 95% Percent
Parameter Estimate Error of Variation Confidence Interval
--------- ----------- ----------- -------------- ----------------------
h(0) 0.44566E-03 0.69514E-04 15.60 0.32734E-03 0.60674E-03
p 0.37089 0.57851E-01 15.60 0.27242 0.50494
EDR 66.991 5.2246 7.80 57.373 78.220
n/K 1.2656 0.12697 10.03 1.0320 1.5522
D 0.89769 0.16648 18.55 0.62355 1.2924
N 30.000 5.5637 18.55 21.000 43.000

--------- ----------- ----------- -------------- ----------------------

Estimation summary (cont.)

Measurement Units
---------------------------------
Density: Numbers/hectares

EDR: meters

Component Percentages of Var(D)
-------------------------------
Detection probability : 70.7
Encounter rate : 29.3
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Estimated densities

Chaffinch Great Tit European Robin Winter Wren

Method 95% CL 95% CL 95% CL 95% CL

Conventional point sampling 1.03 0.74-1.43 0.58 0.36-0.94 0.52 0.26-1.06 1.29 0.80-2.11

Snapshot 0.90 0.62-1.29 0.22 0.13-0.39 0.60 0.38-0.94 1.02 0.80-1.32

Cue-count 0.71 0.45-1.23 0.26 0.09-0.76 0.82 0.52-1.31 1.21 0.82-1.79

Line transect 0.64 0.46-0.90 0.26 0.16-0.42 0.69 0.47-1.00 1.07 0.87-1.31

Territory mapping 0.75 0.21 0.84 1.30

D̂ D̂ D̂ D̂

Estimated effective detection radii (meters)

Chaffinch Great Tit European Robin Winter Wren

Method 95% CL 95% CL 95% CL 95% CL

Conventional point sampling 67 58-78 62 51-74 74 52-104 71 57-90

Snapshot 67 57-78 64 54-75 65 54-77 75 69-83

Cue-count 74 70-79 65 58-71 51 47-57 66 63-69

Line transect† 59 48-72 63 47-84 60 44-83 75 65-86

̂

†effective strip half-width shown for line transect method

̂ ̂ ̂

Estimated hours of fieldwork to obtain a 10% CV for estimated density

Method
Common
chaffinch

Great tit European robin Winter wren

Conventional
point sampling 28 60 131 61

Snapshot 29 70 44 14

Cue-count 56 352 57 40

Line transect 22 49 29 11
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Simulation study, three investigations

1. All assumptions satisfied:
half-normal model, 1000 replicates

2. Overlapping points:
Point separation 100m, effective detection radius 106m

3. Edge effect (similar to Montrave study area),
no sampling in buffer zone, birds detected outside study
area boundary not recorded

Edge effect simulation
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Simulation results – true density = 1

Popn 1 Popn 2 Popn 3 Popn 3, w=80m

353 354 41 32
mean 1.0029 1.0056 0.9509 0.9961
sd 0.0706 0.0815 0.1924 0.3160
se(mean) 0.0022 0.0026 0.0061 0.0100
mean(se) 0.0754 0.0750 0.2099 0.3557

n

Popn 1: all assumptions hold
Popn 2: overlapping plots
Popn 3: edge effect
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Point transects with marine mammals

• Seafloor mounted acoustic recording
packages deployed and listening for
right whale “up-calls”

• Constitutes an example of cue counting
• Analysis incorporated

• false-positive proportion in call
classification,

• ambient noise as covariate,
• left truncation because of inexact

distance estimation at small
distances

Not a recommended allocation of
survey effort; proof of concept

Right whale abundance estimates

See Marques, Munger, Thomas, Wiggins and Hildebrand (2011) Estimating North Pacific right
whale density using passive acoustic cue counting. Endangered Species Research 13:163-172.

• Detection probability of
0.29 (CV=2%) from
fitted model

• Density estimate of
0.26 whales per
10000km2 (CV=29%)

• Abundance in shelf
region of Bering Sea:
25 (CI: 13-47)
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Survey design

• What are your objectives?

• What precision do you need?

• What resources are required?

• Are sufficient resources available?

• Include training in the costings.

• Cost for statistical advice!!

• Conduct a pilot survey.

Line or point placement

• Use randomly positioned lines or points, or a systematic grid of lines
or points, randomly superimposed on the study area

• Do not use roads, tracks, etc.

• Stratify the study area if strong differences in habitat or density are
apparent

• Aim to orientate lines perpendicular to density contours or to linear
features (e.g. woodland edge)

• Many short lines are preferred to a few long lines

Point transect survey design
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Simple random
sampling without
overlapping plots:
use a grid of
squares of side 2w

Points along lines:

Left-hand design: the lines
should be taken as the
sampling units,

Right-hand design: the
individual points can be taken
as the sampling units

Edge Effects

• A problem if study area is small or
narrow relative to w

• Issues

– Coverage probability close to the
edge

– Animals detected outside the
region boundary

2w
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Coverage probability – probability for a given design that a point within the
survey region will be sampled

To calculate the probability, repeatedly sample from the grid using a specific
design (eg: 10 random points) and see how frequently a given point is included.

Minus Sampling

• Coverage probability is lower within w
of the edge

• Assumption
– Animal density within w of the survey

region boundary is the same as for > w

• For data collection and analysis
options, see 6.7 of “Introduction to
Distance Sampling”

Minus Sampling
Observed Distribution Availability Detection Function

distance distance distance
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Minus Sampling
Observed Distribution Availability Detection Function

distance distance distance

Minus Sampling

• Survey up to distance w outside
region boundary

• Assumption

– Animal density is similar either side
of the survey region boundary

Plus Sampling

2w

w

• Sample all points within a buffer w
around the survey region

• Record only animals within the
survey region

• Analysis:
– 0’s and 1’s

– Proportions (GIS)
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Plus Sampling

2w

w

1 1

1 10

0 0

0

0

• Sample all points within a buffer w
around the survey region

• Record only animals within the
survey region

• Analysis:
– 0’s and 1’s

– Proportions (GIS)

Plus Sampling

2w

w

0.9 0.75

0.75 0.6
0.40

0.10 0.20

0.25

0.35

• Sample all points within a buffer w
around the survey region

• Record only animals within the
survey region

• Analysis:
– 0’s and 1’s

– Proportions (GIS)

Line transect survey design
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Simple random
sampling without
overlapping strips:
use a grid of rectangles
width 2w and length l

Systematic grid of short lines with adjustment to avoid partial lines
at the edge

d

d

Surveyed area decreases with
distance from transect

Conventional analysis can give valid
density estimate.

Coverage probability lower at edge

• See Section 6.7 of Introduction to Distance
Sampling, 2001
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Extrapolate lines beyond
boundary recording only
animals within survey region

Use of a buffer zone to eliminate edge effects

Survey region

Boundary

x

x
x

x

x

x

o

o

o

l

Extend the line beyond the boundary, but don’t include the associated effort, and don’t record animals
detected outside the region (O)

A circuit design

w

If we remove the circuits that overlap the boundary (dashed) we undersample the edge.
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• We can include partial circuits at the edge

• Fine if travelling for a small amount of survey is acceptable

Or delete circuits mostly outside, and reflect and displace remaining edge circuits

Major axis

Saw-tooth or zigzag designs
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A B

X

Animal X is detected in trapezium A, so is associated with line segment B

Corners in saw-tooth and circuit designs:

Right-angle corners:

Land

Survey region
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x
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x
x

x

x
x
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x x

x
x
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x
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Designing an inshore survey
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Iceland – aerial survey design, whale survey

Actual effort, Icelandic whale survey

Stratification (Geographic)

Why stratify?

1. To improve precision.

a. Estimate inter-stratum differences rather than have them contribute to
variance.

b. Reduce overall variance by increasing effort in strata which contribute
most to variance.

2. Because want estimates by sub-region/stratum.

3. For logistic reasons
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Stratification (Geographic)

What to stratify?

1. Encounter rate: Density often varies spatially.

2. Detection function: May vary spatially. There are often sample size
limitations on stratified estimation (too few detections in some strata).

3. Mean cluster size: May vary spatially. There may be sample size
limitations on stratified estimation.

NB: If any of the above are estimated by pooling across strata, when in
reality they differ between strata, within-stratum estimates are biased.

Most animals between 200m and
2000m contours, so put more effort
into a shelf-edge stratum?

But:

Sample size too low in other strata?

Other species?

Stratification (Spatial)

Most animals between
200m and 2000m contours,
so put more effort into a
shelf-edge stratum?

But:

Sample size too low in
other strata?

Other species?

Stratification (Spatial)

Optimal effort location for one species may be poor
for another species.

Uniform effort across strata is often a good design
for multi-species surveys. Pooling robustness is lost if
coverage differs among spatial strata.
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Sample size

• Aim for at least 60-80 sightings for fitting the detection
function

• and at least 20 lines or points for estimating encounter
rate n/L or n/k

• Whether reliable estimates can be obtained from
smaller samples depends on the data

Sample size – continued

More observations are required:

• if detection function is spiked

• if population is highly aggregated

• for point transect sampling

Increasing sample size using repeat counts

If a line is sampled three times,

• pool the distance data from the three visits

• enter survey effort as three times the line length.

If a point is sampled three times,

• enter survey effort as 3.
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Determining total line length

where is the target cv (e.g. 10% is 0.1)

Pilot study: n0 animals (or clusters) counted from lines
totalling L0 in length.

Total line length required in main survey is

and …
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Determining line length (cont)

Pilot studies are typically too small to estimate q. If past
similar data sets are not available, assume q = 3.

q is approximately
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Line length example

A pilot study yields n0 = 20 observations from lines of total length
5km. We require a CV of 10%, and assume q = 3.
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Determining line length (cont)

where
is the cv of estimated density obtained from the pilot

survey, and L is total line length in the main survey

If pilot survey is sufficiently large, calculate line length for
main survey as

2

2
00

)]ˆ([

)]ˆ([

Dcv

DcvL
L

t



)ˆ(
0

Dcv

Point transects: number of points

or

0

0

2)]ˆ([ n

k

Dcv

q
k

t











2

2

00

)]ˆ([

)]ˆ([

Dcv

Dcvk
k

t



where k0 points in the pilot survey yielded n0 detections, or
estimated density of

0
D̂
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Automated Survey Design

Aim: Use geographic information system (GIS) within Distance to
aid survey design and evaluate properties of different designs

• Based on PhD thesis work by Samantha Strindberg

• Strindberg, S. and Buckland, S. T. 2004. Zigzag survey designs in line transect sampling.
Journal of Agricultural, Biological, and Environmental Statistics 9:443-461

• Thomas, L., Williams, R., and Sandilands, D. 2007. Designing line transect surveys for
complex survey regions. Journal of Cetacean Research and Management 9:1-13

• See Chapter 7 of Advanced book (Design of distance sampling surveys and Geographic
Information Systems by Strindberg, Buckland and Thomas)

Contents

• Background and Terminology

• Point Transect Designs

• Line Transect Designs

• Design-based Abundance
Estimates

• Survey Design in Distance

• ArcGIS

Background

• Pen and Paper
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Automated survey design using GIS technology

• Easily generate surveys based on
randomised designs

• Print out maps or download to GPS

• Evaluate properties of different designs

– optimise for any situation

Terminology

• Sampler – a sample unit

– Strip (line transect)

– Circle (point transect)

• Design – an algorithm for laying out samplers

• Survey – a single realisation of a design

• Sampling strategy – design & estimator

• Coverage probability – probability for a given design that a point
within the survey region will be sampled

Example: Coverage Probability

– Uniform coverage probability, π = 1/3 

– Uniform coverage probability, π = 1/3

– Uneven coverage for any given
realisation

P

P

Survey Region

74  CREEM, Univ of St Andrews August 2016 Introductory Distance Workshop



Which Design?

• Uniformity of coverage probability

• Even-ness of coverage within any given realisation

• Overlap of samplers

• Cost of travel between samplers

• Efficiency when density varies within the region

• Edge effects

Point Transect Designs

• Simple Random

versus

• Systematic Grid

Comparison

• Uniform coverage – both have uniform coverage
probability

• Systematic has more even coverage for any given
realisation

• Can have overlap of samplers in simple random design

• Cost of travel is similar
– If this is important a cluster sampling design can be used
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Density Variation

• Systematic generally more reliable

• If variation in density is predictable
– Consider stratification

– Or unequal coverage probability design

• If not predictable
– Adaptive sampling

• Consider modelling the density surface,
(i.e. a model-based estimate)

Animals

Survey Region

Example of Stratified Point Transect Design

Example showing complex nested strata: a nested grid

Effort allocation set using formulae in Section 7.2.2.3 of Introduction to Distance Sampling
(For more about this example, see Central Africa Pilot Project at https://cites.org/eng/prog/mike/pilot/index.shtml)

Line Transect Designs
- Full Length Transects

• Parallel Random • Systematic

Often used in aerial (and sometimes shipboard) surveys
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Full Length Line Transects
- considerations

• Coverage for a given realisation is more critical as there
tend to be fewer lines than points – lines are more expensive

• Transit (off-effort) time can be considerable

• Other full-width line transect designs include random line
orientation, non-overlapping random parallel, etc.

Segmented Line Transect Designs
-Fixed Length Transects

• Systematic
segmented trackline

• Systematic
segmented grid

Edge Effects

• Not a problem if you are willing to survey incomplete segments

• Otherwise you could reflect back incomplete segments already more
than ½ inside

This gives even coverage probability but is hard to reliably automate
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Edge Effects (contd.)

• Systematic segmented
trackline

• Systematic segmented
grid

Could push segments back in if they are already more than ½ inside

Edge Effects (contd.)

• Systematic segmented trackline • Systematic segmented grid

… but this leads to uneven coverage probability near the edge

N.B. Both use random orientation of transects in the northern stratum

• Systematic segmented grid seems superior

• Consider random orientation of lines, (in Distance, type -1 under

angle in Effort Allocation tab)

• Random orientation of each segment may be even better,
(not yet in Distance)

• Other designs (such as circuit samplers) are worth
considering, (not yet in Distance)

Fixed Length Line Transects
- considerations
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Zig-zag Line Transect Designs

• Used commonly in shipboard
surveys

• Advantage (over systematic parallel)

– Improved efficiency

• Disadvantages
– Design is difficult in complex regions

– Coverage probability may be uneven

Design Difficulties
non-convex survey region

Survey
Region

Minimum
bounding
rectangle

Convex hull

Design Difficulties
non-convex survey region

Survey
Region

Minimum
bounding
rectangle

Convex hull
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Dealing with Complex Survey Regions

• Example: Antarctic shipboard survey

Dealing with Complex Survey Regions

• Example: Antarctic shipboard survey, (contd.)

• Study region divided into suitable strata to increase efficiency

Efficiency

• Example: SCANS II – ship survey in North Sea

• Cross survey region twice

Scottish east coast
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Effort Allocation
• Example: SCANS II – aerial survey

• Distance outputs total track length for survey

Considerations:

Total effort available

Required transit effort

Rest periods

Spare survey

Stratification
• Example: SCANS II – aerial survey

• Stratification based on prior knowledge of animal density

Coverage probability for
zig-zag designs

• Equal angle zig-zag

• Equal spaced zig-zag

Ought to employ random start point
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Coverage probability for zig-zag designs (contd.)

• Adjusted angle zig-zag

• Even coverage probability
parallel to the design axis

• In practise, approximate curved
path with a series of straight lines

Coverage Probability Comparison for Zig-zag
Designs

c
o
v
e
ra

g
e

p
ro

b
a
b
ili

ty

Automated survey design in Distance

• Import data from GIS (or type it in!)

• Create coverage grid

• Create design

• Generate example surveys from design (run 2nd option)

• Assess even-ness of coverage probability via simulation
(run 1st option)

• Finally can export GIS data, map or sampler coordinates
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Main Points

• Line transects are preferable

• Parallel designs give uniform coverage
– Systematic designs give more even coverage for any survey

• Zig-zag designs usually more practical

• Lines should be placed parallel to density gradient
– Otherwise should be placed to maximise number of samplers

QGIS software to split study area into strata

• Ensure Geographic Coordinate System is defined

• Project data on to a flat surface
– Eg. Albers Equal Area Conical Projection

Carving the study area

Open Study_ar shapefile
Expose advanced digitizing toolbar
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Carving study area (cont.)

• Toggle edit and choose split • Right click start, left click finish

Save newly created strata shapefile

• Open attribute table, create/edit LinkID
• Save shapefile

Next Steps

• Create a new distance project

• Add correct number of strata

• Close project

• Replace the empty shapefiles created in the Distance project .dat
folder with those manipulated in ArcView

– Note: You may need to rename your files to match those created by Distance
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Things to Remember!

• Arc ToolBox to define coordinate system and project shapefile

• ‘Cut Polygon Features’ in ArcView can be used to divide area
into strata

– Define LinkID in attributes table

• Non-editing mode to create LinkID field

• Editing mode to change LinkID values

• Distance help ‘Importing Existing GIS Data’
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Stratification and
Clustered Populations

Stratification

• Why stratify?

• Stratification by:

• Geographic area
• Survey
• Species / cluster size

• Limitations of Distance

• Section 3.7 in introductory book

Stratification is used to:
• reduce variance and improve precision
• and for producing estimates in regions of interest

Stratify by:
• AREA or GEOGRAPHIC REGION

- the study region is partitioned into smaller regions

• SURVEY
- used when different surveys cover the same geographic area

• POPULATION/SPECIES/CLUSTER SIZE
- same geographic region with different ‘sub-stocks’ in it
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Area/Geographic stratification

321 AAAA 

Estimate density in each sub-region
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Total abundance is Overall (Global in Distance) density is

Note form of equation

Example: SCANS II (2005)
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SCANS II
survey effort

Example of stratified data

Example: Full geographic stratification

D

f1(0) f2(0) f3(0)

E1(s) E2(s) E3(s)

(n/L)1 (n/L)2 (n/L)3
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Example: f(0) pooled

D

f123(0)

E1(s) E2(s) E3(s)

(n/L)1 (n/L)2 (n/L)3

Pooled vs Stratified f(0)

Pooled n=88

Stratified

Ideal Habitat n=39

Marginal Habitat n=49

It’s a Model Selection Problem

Criterion for stratification of f(0):
Fit separate f(0) for each strata if

strata
stratumpooled

AICAIC 

Pooled Stratum 1 Stratum 2 Stratum
Sum

Log likelihood loge(L) -180.490 -72.699 -104.676 -177.375

No. parameters (q) 2 2 2 4

AIC 364.980 149.398 213.352 362.75
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Non-geographic stratification
Stratification by survey

Survey 1

Survey 2

i
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
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Let Li be effort for survey i

Global density is given by

This is the same form as before, but
weighting factor now depends on effort

Stratification by survey

Stratification by species

21
ˆˆˆ

spsp DDD 

Species 1

Species 2
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Limitations in Distance

• Distance cannot currently do multilevel
stratification in one run

• Two runs are necessary
– Estimate f(0), E[s] and n/L by stratum

– Combine strata 1 and 2 to estimate f12(0)

• Care must be taken when calculating cv’s
because the density estimates for stratum 1 and 2
have an estimated f(0) in common

D

f12(0) f3(0)

E1[s] E2[s] E3[s]

(n/L)1 (n/L)2 (n/L)3

Alternatives to stratification in Distance

• Small sample sizes can lead to low precision in stratum-specific estimates

• An alternative approach to reducing bias due to heterogeneity is Multiple Covariates Distance
Sampling (MCDS)

• Covariates, other than distance, are incorporated into the scale parameter of the detection
function

• MCDS can be used to fit the detection function at multiple levels e.g. stratum-specific density
estimates can be obtained even if you don't have enough data to fit separate detection functions
for each stratum

• MCDS methods are covered in an upcoming lecture.

Clustered Populations

• What changes when animals occur in clusters

• Size bias

• Methods to deal with size bias

• How to implement these methods in Distance

• Section 3.5 in introductory book
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Clustered populations
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Density of clusters

Mean cluster size

Mean cluster size estimation

No Size Bias

• Mean of observed sizes does not change with
distance

Size Bias

• Smaller clusters less detectable at larger

distances

• Mean observed cluster size increases with
distance
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Effect of size bias on sample mean
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Regression methods

Mean
observed
cluster size

0

E(s)

wDistance (x)
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Distance (x)
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)

)(ˆ sE

)(sE

Linear regression of s on x

Problems with the linear regression method

• Problem: Relationship between s and x is not linear – no
relationship when detection is certain (i.e. in the shoulder of the
detection function).

• Solution: Linearize by regressing s on

• Problem: Variance in s increases with E(s) – large cluster sizes
distort the fit.

• Solution: Regress log of cluster size on

)(ˆ xg

)(ˆ xg
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Distance

Distance
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This is the default method in Distance

Regression of log cluster size on )(ˆ xg

Estimating
E(s) in

Distance
using

regression
methods

Output of
regression
estimates

Regression
estimate of
cluster size

Mean cluster
size from data
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Line
printer

regression
plot

Precision
of

estimate

Estimating E(s) in the presence of size bias

1. Regression methods

2. Include size in model for
detection function

3. Stratify by cluster size

4. Truncation of size-biased data

5. Replace clusters by individuals

Default method in
Distance

Multiple Covariate
Distance Sampling

Rarely used now
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Multiple covariate
distance sampling

(MCDS)

Aim of MCDS
Model the effect of additional covariates on detection probability, in

addition to distance, while assuming probability of detection at zero
distance is 1

i.e. model f(0) as a function of covariates
• Based on PhD thesis work by Fernanda Marques

• Chapter 3 of Advanced book

• Marques, T.A., L. Thomas, S.G. Fancy and S.T. Buckland. 2007. Improving
estimates of bird density using multiple covariate distance sampling. The Auk
127: 1229-1243.

• Section 5.3.2.1 of Buckland et al. (2015) and
– http://www.creem.st-and.ac.uk/DS.M&A/amakihi/amakihi.html

Contents

• Why additional covariates?

• Multiple covariate models

• Estimating abundance

• MCDS in Distance

• Complications

– Clustered populations

– Adjustment terms

– Stratification

• MCDS analysis guidelines
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x

g(x)

x

g(x)

In conventional distance sampling
(CDS) analysis all factors affecting
detectability, except distance, are
ignored

In reality, many factors may
affect detectability

Sources of heterogeneity:

Object : species, sex, cluster size

Effort: observer, habitat, weather

Why additional covariates?

Examples of heterogeneity 1
Effect of time of day on Rufous Fantail birds in Micronesia (point transects). Ramsey
et. al. 1987. Biometrics 43:1-11

x

x

g(x)

g(x)

Examples of heterogeneity 2

Effect of sea state (and other covariates) on sea turtles in the Eastern Tropical
Pacific (shipboard line transects). Beavers and Ramsey, 1998, J. Wildl. Manage. 63:
948-957
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Examples of heterogeneity 3

Effect of cluster size on beer cans. Otto and Pollock, 1990, Biometrics 46: 239-245
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Why worry about heterogeneity?

• Pooling robustness works for all but extreme levels of heterogeneity

• Potential bias if density is estimated at a ‘lower level’ than detection function
(e.g. density by geographic region, detection function global)

• Could potentially increase precision of detection function estimate

• Interest in sources of heterogeneity in their own right (e.g. group size)

In CDS, we use models that are pooling robust, so why worry about heterogeneity?

Dealing with heterogeneity
Stratification

Requires estimating separate detection function parameters for each stratum, so often not possible
due to lack of data

Model as covariates in detection function

Allows a more parsimonious approach:

- can model effect of numerical covariates

- can ‘share information’ about detection
function shape between covariate levels

~ 680

~ 320

~ 140
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Recap of CDS models

g(x) = Pr[animal at distance x is detected]

cxpaxk
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Key function

jth series adjustment term

Scaling constant to ensure
g(0) = 1

Multiple covariate models

CDS models continued

Key functions

• Hazard rate

• Half-normal

• Neg. exp.

• Uniform

Series adjustments

• Cosine cos(jπxs)

• Polynomial xs
j

• Hermite poly. Hj(xs)

xs are scaled distances (see later)
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g(x,z) = Pr[animal at distance x and covariates z is detected]

Assume the covariates affect the scale of the key function, not its shape. So
choose key functions with a scale parameter

Let
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Half normal

k is used here to denote the “key” function
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Modelling with covariates

Example: Dolphin tuna vessel data

Model: half-normal, with no adjustments

Covariate: cluster size, s
~ 680

~ 320

~ 140
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From distance output
Â 1 = 2.331
Â 2 = 0.00895

Estimating abundance without covariates
using Horvitz-Thompson estimator
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MCDS in Distance
In Model Definition, choose MCDS analysis

engine

See Chapter 9 of online Users Guide

Covariate type:
– Factor covariates classify the data into distinct

classes or levels. Can be numeric or text. One
parameter per factor level.

– Non-factor (ie. continuous) covariates must be
numeric. One parameter per covariate + 1 for the
intercept.

Complications
1. Clustered populations
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There are two approaches to estimating number of individuals when objects are in
clusters:

When cluster size is not a covariate, we use (1); when it is a covariate, we use (2)
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Clustered populations (contd.)

To tell Distance that a covariate
represents cluster size, tick the box:

When cluster size is a covariate:

• Distance does not estimate variance
using analytic methods: the bootstrap
must be used (Reflected in the Variance
tab)

•There is no need for size bias regression
methods (Cluster size tab changes)

• No stratification allowed (Estimate tab)
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Complications
2. Adjustment terms

Adjustment terms use scaled distances, xs

• cosine adjustment of order 2: cos(2πxs)

• simple polynomial of order 4: xs
4

Why scale?

• Avoid numerical problems

• Limits cosine adjustment to a small number of ‘wiggles’

How to scale?

With adjustments: cxpaxkxg
m

j
sjj 







 

1

1 )(),(),( zz

Adjustment terms (contd.)

Then covariates affect the scale of the key
function, but adjustment terms are
unaffected by covariates, so the overall
shape varies with covariate value:

e.g. half-normal with 1 cosine adjustment
of order 2
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Note: no monotonicity constraint

Scenario 1: Scale distances by w, the right truncation distance xs = x/w

Adjustment terms (contd.)

Then covariates affect the scale of the key
function, and the scale of the adjustment
terms, so only the scale and not the shape of
the overall function is affected:

e.g. half-normal with 1 cosine adjustment of
order 2

Scenario 2: Scale distances by σ(z), the estimated scale parameter xs = x/σ(z)
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Adjustment terms (contd.)

The previous was an extreme example, to
illustrate the difference between scaling
factors.

Generally:

• start with no adjustment terms and
introduce covariate terms one by one

• check the fit with adjustments looks
reasonable

• consider whether to scale by w or σ

• you may need fewer adjustment terms with
MCDS than CDS analyses

Complications
3. Stratification

If we want stratum-level estimates of density/abundance we can fit the detection
function with covariates globally, and estimate f(0|z) by stratum:

• If estimating density by sample, could estimate f(0|z) by stratum

• Global variance estimate for density/abundance must be calculated via the bootstrap

Tick both boxes

MCDS analysis guidelines
Choose covariates that are:

• independent of distance

• not strongly correlated with each other

Specifying the model:

• factor covariates generally harder to fit

• avoid or limit automatic selection of adjustment terms

• if using adjustments, consider whether to scale by w or σ

• check convergence and monotonicity

• add only one covariate at a time

• where necessary, use starting values and bounds for parameters

• consider reducing the truncation distance, w, if more than 5% of the Pa(zi) are <0.2, or if
any are less than 0.1
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Multipliers and Indirect Methods

• Why and how we use multipliers

• Cue counting

• Indirect surveys

• Lure and trapping point transects

• Section 3.1.4 in introductory book

Multipliers in Distance

Adds appropriate
fields to Global data
layer

Multipliers

)0(ˆ

1
.

2

)0(ˆˆ
gL

fn
D 

• In some surveys, cues (whale blows, bird songs) are the object of detection rather than the
animal itself.

• For instantaneous cues (whale blows, bird songs) animal density, D, is estimated by cue
density Dc divided by cue rate r

r

D
D c

ˆ
ˆ 

These are called multipliers

• If g(0) < 1, then the standard method of analysis will produce a density estimate that is
proportional to the true density. Then true density (without clusters) is estimated using
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Multipliers: examples

The multiplier, denoted by c, might be

• a known constant
• sampling fraction ≠ 1

• a parameter, or product of parameters, to be estimated
•
• some proportion of the population is surveyed
• cue counting
• indirect surveys

1)0(ˆ g

Examples: sampling fraction ≠ 1

One-sided line transect sampling: c = 0.5 to represent the fraction of the strip
surveyed

In point transect sampling if one quarter of the circle was surveyed: c = 0.25

Point transect sampling with each point visited five times: c = 5

Cue counting where c is the proportion of the circle covered by the observation
sector (see later)

L

fn

L

fn
D

)0(ˆ

5.0

1
.

2

)0(ˆˆ 

25.0

1
.

2

)0(ˆˆ
k

hn
D




• Surveys where g(0) < 1

• Surveys in which only a proportion of the population is surveyed:
• c = p where p is the proportion surveyed,

• usually must be estimated,

• e.g. desert tortoises, seabirds on land/at sea, whales with long dive times

• Cue counting where c is the cue rate

• Indirect surveys e.g. dung/nest surveys (see later)

Examples: parameters to be estimated
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Multipliers: variance

For line transect sampling

cL

fn
D

ˆ2

)0(ˆˆ 

For point transect sampling

ck

hn
D

ˆ2

)0(ˆˆ




Remember the multiplier is denoted by c.

If c must be estimated (by ) then this additional variance needs to be included in the density
variance

     222
)ˆ()]0(ˆ[)()ˆ( ccvfcvncvDcv 

     222
)ˆ()]0(ˆ[)()ˆ( ccvhcvncvDcv 

ĉ

Cue counting: point transects
Point transect survey where distance to detected cue is recorded

Cue is single burst of song (instantaneous cue)

Valid even if birds are moving during the count

Cue density is

2

)0(ˆˆ hn
Dcues 

k

hn
D

2

)0(ˆˆ 

Note: the standard point transect estimator is

r

w

T

hn
D Tcues

2

0 )(ˆˆ
/ 

And if you searched for time

cues per unit area, per unit time.





k

i

iT
1

pointatspenttime

cues per unit area

Where is the estimated number of cues per animal, per unit time.

Cue Counting: animal density

̂

We want animal density, not cue density per unit time, so

̂

ˆ
ˆ /Tcues

animals

D
D 

     ̂ˆˆ 2
/

22 CVDCVDCV Tcuesanimals 

New component of variance
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Cue Counting: line transects




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Fraction of circle searched:

So that:
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cues per unit area.

T

hn
D Tcues



)0(ˆˆ
/ 

And if you searched for time T

cues per unit area, per unit time.

( in radians)

Setting up a cue counting project

Setting up multipliers for cue counting

Introductory Distance Workshop August 2016 CREEM, Univ of St Andrews  107



Cue counting project: example data

̂ 



2



T

Indirect surveys

• Useful when direct distance sampling of a population is difficult,
• but estimating the density of some object produced by the animals is feasible

• Examples are dung surveys of deer, elephants, big cats and nest surveys of
apes

• Production rate and the disappearance rate of the objects of interest need to be
estimated

• Key difference between direct and indirect surveys
• for direct surveys, an estimate of abundance at the time of the survey is

obtained
• for indirect surveys, the final estimate of abundance is an average over a

time period corresponding to the mean time to decay of the object

Estimating animal density from indirect surveys

Example: a line transect survey of dung (the same procedure also applies to surveys of nests)

Use conventional methods to estimate the density of the object of interest, in this case we
estimate dung density,

L

fn
D

d
2

)0(ˆˆ 

d

D
G d

ˆ

ˆ
ˆ 

d̂

= dung production per day per unit area

• Finally, divide by = estimated daily production of dung by one animal, (number of dung piles per day)

rd

D

r

G
D d

ˆˆ

ˆ

ˆ

ˆ
ˆ




• Divide dung density by = estimated mean time to decay (in days say)

= dung density

= animal density

r̂
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Estimating defecation rates
• Observe the animals in the wild in the study region, and record defecation rate

• Observe animals in captivity, in an environment as close as possible to that of the
study region

• Put a known number of captive animals into a natural enclosure clear of dung
• Leave them for a period that is less than the shortest decay time

• Count, or estimate, the dung abundance at the end of the period

• Defecation rate is then estimated from

• Sample size is the number of animals, not the number of dung piles

• Similar considerations apply to nests

enclosureindaysofnumberanimalsofnumber

pilesdungofnumber
ˆ


r

Estimating dung decay rates
• May vary spatially and seasonally and so carry out the decay rate study in the region and time

leading up to the survey

• Define consistent criteria for determining whether dung has decayed

• Search for and mark fresh dung at a representative sample of sites at intervals of time which span
the decay period of more persistent dung

• During the line transect survey, pay a single visit to each marked dung pile and record whether or not
it has decayed (more visits may be required if the line transect survey is of long duration)

• Analyse the data using logistic regression with time between marking and the revisit as the
explanatory variable (and possibly additional variables)

• Similar considerations apply to estimating nest decay rates

Specify how
multiplier should
be used
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Trapping and lure point transects

These use just one trap (or lure) per sampling plot:

Estimating the detection function

We do not know the initial location of animals that are
trapped or lured, so that distances from the point are
unobserved.

We therefore need a sample of animals whose initial
location is known. We then record whether each of these
is trapped, or lured to the point.

Example: Scottish crossbillsa

aBuckland, S.T., Summers, R.W., Borchers, D.L. and Thomas, L. 2006. Point transect sampling with traps or
lures. Journal of Applied Ecology 43, 377-384

Section 9.2.1 of Buckland et al. (2015) and http://www.creem.st-and.ac.uk/DS.M&A/crossbills/crossbills.html
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Key Largo wood rats

• Over 4 years, 33 females and 22 males were radio
collared

• More than 1000 trials (trap exposures) were conducted
on these individuals

• Sex-specific random effects models were used to
estimate detection probabilities as functions of distance
of animal from trap

• Clearly these secretive animals are unlikely to be caught
in traps even if the traps are atop the animal

Potts, J.M., S.T. Buckland, L. Thomas and A. Savage. 2012. Estimating
abundance of cryptic but trappable animals using trapping point transects: a
case study for Key Largo woodrats. Meth. Ecol. and Evol. 3:695-703.

Section 9.2.2 of Buckland et al. (2015)

Baltic harbour porpoise

• Hydrophones (C-PODs) placed in the Baltic
• Visual tracking of porpoises by observers

set up the “trials”
• Logistic regression permits estimation of

detection probability of porpoises at different
distances from the hydrophones

• See
http://www.sambah.org

for more details

Advantage

• We do not assume that detection at the point is certain –
we allow g(0)<1

Disadvantage

• Trade assumptions for data

• We need to know the initial location of a number of
animals, e.g. using radio-tagging or lure trials
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• Objectives of adequate field methods

– g(0)=1

– Reduce / avoid effect of movement

– Get accurate and precise distances

• General recommendations

• A few special circumstances

Field Methods:
(given an adequate survey design has been used)

“Considerable potential exists for poor field procedures

to ruin an otherwise good survey”

Goal: ensure key assumptions met

• g(0)=1

• no responsive movement prior to detection

• distances measured without error

• detection function has a wide shoulder

Make sure that g(0) is 1

• Traditional data tells you nothing about g(0)

• Good field methods and common sense help to achieve it
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Wooden Stake Surveys N = 150

106ˆ
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



N

n

138ˆ

55





N

n

Make sure that g(0) is 1

• Do not try to see everything

• But try to see everything on the line
– More detections do not necessarily equate to better data

Make sure that g(0) is 1

• Use multiple observers

• But avoid spiked data…
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Belly
window

Side
window

Warning – g(0) is probably < 1 !

• Situation

– Even with a well-defined search protocol and good observers, animals near the line may be missed

• Problems

– Underestimation in density/abundance

– Added variability (if g(0) changes with survey period) reduces power

• Solutions

– Independent observers to estimate g(0)

– Technology (Video Camera, Infrared)

– Change methods (go slower, lower)

– Independent estimates of g(0)

– trials on animals of known location
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Avoid the effect of movement

• detect animals prior to responsive movement
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• effect on data is not always obvious

Avoid the effect of movement
For points:

Snapshot method, waiting periods (before and after)

Use cues rather than individuals?

For lines:

Look ahead

Move slowly, carefully, quietly

– but if observer speed < 2-3 times average animal speed, see
Section 6.5 of introduction to distance sampling book

Get accurate and precise distances

Technological aids can be invaluable - use
whenever possible

Avoid introducing more uncertainty by guessing
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Get accurate and precise distances

If possible, mark the transect line

A clear definition of what you are measuring distance to helps to
guard against spiked data and bias

Get accurate and precise distances

• If size of animal/object is large compared to scale of measurements, define what
measurement is to be made (e.g. from line to centre, tallest part, flower, etc)

• If measuring distances to clusters, get the distance to the “centre of the cluster”

• In practice, the mean between closest and furthest away distance might be enough
(remember to collect signed distance)

xc

xf

x = (xc+xf)/2

xf

xc

General recommendations
• Strive for wide shoulder in detection function
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• Think about optimal effort allocation (ensure g(0) while distributing effort)

• More than one observer?
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General recommendations

• If possible, review data during survey

• Recording data should be easy, accurate and reliable

• Collect only relevant data

– Perpendicular distance or distance and angle? (Angles for point transects?)

– Cluster size

– Effort (line length; no. of points); line or point ID

– Observer name, survey block, date, start time, end time, weather, environmental conditions,
habitat, sex, species, age, etc…

General recommendations

General recommendations

• Make data collection as easy as possible e.g.:
– dedicated field sheets

– distance intervals for aerial surveys

– tape recorder + voice activated microphone

– separate person to record data

– automated data entry (ship’s GPS, etc.)

– video

• Have a backup
– backup recording method

– backup of field data
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General recommendations

• (most…) OBSERVERS ARE HUMAN…

– Observing for long hours can be boring – plan breaks /rotations

– Want to count what you see

• have a “>w” category

• for one-sided transects, have a category for negative values

– Teach observers how to search

• Emphasize effort on and near line

• Look ahead

• Look back if necessary

– Do not assume observers know what to do

– Go with observers to the field

– Test and train observers – reward good observers?

Special circumstances: Multi-species surveys

• Problems

– Species differences in detection

– Identification of similar species

– High density situations

• Solutions

– Multiple observers

– Training

– Focus on key species

Animals at high density

• Consider strip transects

• Reduce truncation width

• Increase observation time (move more slowly)

• Multiple observers

• Streamline data collection

Introductory Distance Workshop August 2016 CREEM, Univ of St Andrews  117



One-sided transects

• Avoid!

• Problems:

– accurate line determination

– movement into or out of survey strip

• Leads to heaping at zero distance

Some of what can go wrong, will likely go wrong

• Situation
– Hi tech breakdown

– No planning

– Haven’t thought about assumptions

• Problems
– Data are lost

– Poor quality data

• Solutions
– Sometimes low-tech is better

– Backups

– Conduct a pilot survey

– Train observers

– Examine data during survey

I spent all my money and have no
data!
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Introduction to Distance Sampling

Exercise 1: Line transect estimation by hand

1) Plot a histogram of the following duck nest data, and fit a detection function by eye.
From your histogram, estimate the proportion of nests within 2.4m of the line that are seen, Pa.
Hence estimate nest density D (number of nests per square meter or per square kilometer – be
careful of units!).

n=534 nests. L=2575 km.

Perpendicular
distance band
(meters)

0.0-0.3 0.3-0.6 0.6-0.9 0.9-1.2 1.2-1.5 1.5-1.8 1.8-2.1 2.1-2.4

Frequency 74 73 79 66 78 58 52 54

Having produced your fit to the histogram, to assist in producing your estimate of nest density, fill
in these blanks.

Area of rectangle =

Area under your fitted detection function =


glerec

curve
a

area

area
P

tan


a

a
P

n
N̂


wL

N

a

N
D aa

2

ˆˆ
ˆ

Complete only part 1) of this exercise until instructed to go further.

2) Now use your histogram to estimate the effective half-width of search . Again estimate nest
density D. How does it compare to your estimate from part (a)?

3) Rescale the y-axis to make your curve into the probability density function f(x). Read off f(0),
and again estimate nest density D. How does it compare with your previous estimates?
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Introduction to Distance Sampling

Exercise 2: Line transect estimation using Distance: Ducknests

GETTING STARTED ON THE COMPUTER

Click on “Start”. A list will be displayed. Click on “Programs”, then “Distance”. Now click on
“Distance 7.0”. (Or double-click the Distance 7.0 icon on the desktop.) This opens Distance.

1. Refer to the data from the graph paper exercise (Exercise 1). These data have been set
up as a Distance project, which have been archived in a compressed (.zip) file on your
thumb-drives. You should copy the subdirectory containing the Distance projects for the
workshops to the My Distance Projects folder under My Documents, or to a location of your
choice (to make it easier to find for subsequent exercises).

 Select File followed by Open project. Under “Files of type” choose Zip archive files (*.zip).

 Next to “Look in:”, browse for the thumb drive directory (or wherever you have saved the
exercises). Note: Distance includes some sample projects. The Sample Projects folder is
the default folder Distance opens when instructed to open a new project, and contains a
different duck nest data set, so make sure that you are looking in the right place!

 You can change the default folder to one of your choice by checking the box next to “Save
this folder as the default for Distance projects”. If you do this, the next time you open a
project, Distance will look in the folder you specified – containing all the exercises relevant to
this workshop. The Sample Projects folder will still exist in Distance, and you may want to
look at those projects at a later date.

 Double click on Ducknest exercise.zip. Click OK to unpack the project into the current
directory and open it. Next time you open the project, you can open the file Ducknest
exercise.dst directly.

Examining the data

 Click on the Data tab of the Project Browser to show the Data Explorer. Look at the data
structure and in particular how the distance data have been entered. (You will need to click
on Observation in the left hand pane of the Data Explorer to see this.)
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Studying the first analysis

 Now click on the Analysis tab of the Project Browser to show the Analysis Browser. You
should see one analysis listed, called “Half-normal no adjustments.” Double-click on the grey
status button for this analysis to open the Analysis Inputs tab for this analysis (you can do
the same thing by clicking the 3rd button after “Analysis:” on the Analysis Browser menu bar,
or by choosing Analyses then Analysis Details... from the menu bar at the top).

 A grey status icon indicates that this analysis has yet to be run. Click on the Run button in
order to run the analysis. The Results tab should turn green.

 Click on the Results tab to see the results, and use the Next > button to move through the
pages of results, looking at each page and trying to relate the analysis given here to the one
you did by hand. (Note: These are the analysis details (Inputs/Log/Results) for one analysis –
you can resize this window so that you can view details from multiple analyses when you have
more than one analysis to compare).
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Creating a new analysis

 Return to the Analysis Browser, and click on the first button after “Analysis:” on the Analysis
Browser menu bar (“New Analysis”). Double-click on the status button to go to the Analysis
Details window for this new analysis.

 Because the analysis is not run, you are taken to the Inputs tab. You will not need to edit the
Survey or Data Filter for this example, but click on New in the Model Definition section.
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 Specify a half-normal key function with a cosine series adjustment, allowing selection of
adjustment terms. When you have defined your new model, give it a suitable name (one that
reflects the options you have set) and select OK.

 Now give your analysis a suitable name, and click the run button. When the analysis finishes,
it will automatically take you to the log tab if there were problems, or the results tab if the
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analysis ran without errors or warnings. From the results tab, you can investigate the result of
your analysis.

 Create one more detection function model, this time specifying the hazard rate as key
function, and Hermite polynomial as the adjustment. Compare the performance of the 3
models you fitted to this dataset. Note: when you create a new analysis (or model definition
or data filter), Distance copies the settings from whichever analysis (or model definition or
data filter) was highlighted at the time (the name is also copied). The default settings are not
restored automatically.

 It is easiest to compare results from different analyses using the Analysis Browser. You can
change the default columns in the browser using the Column Manager (furthest button on
the right of the Analysis Browser menu bar).
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 As you create more Data Filters and Model Definitions, you may find that you want to change
their order, rename or delete them. A convenient way to do this is using the Analysis
Components window – click the 6th button from the right on the main menu bar (“View
Analysis Components”). In the Analysis Components window, clicking the first button lists the
Data Filters and clicking the second button lists the Model Definitions.
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Introduction to Distance Sampling

Exercise 3: Line transect estimation using Distance

1(a). The line transect data immediately below were generated from a half-normal model.

 Open a new project (click on File then on New project ...), name it, and click on Create.
Step through the New Project Setup Wizard (you should not need to change any of the
defaults, except the units for density estimates to km

2
not the default hectares, but study each

page) and click on Finish. This takes you to the Data Entry Wizard. Click Next until you get
to the “line transect” page Step 4 of 6: Sample layer. Enter say the first 6 line labels (e.g. “line
1”, “line 2”, …) and lengths (5, 2, …). You need to click on the “append new record after
current” button on the menu bar or type CTRL + Enter together before entering the
information for each line.

 When you have finished, click on Next and enter the distances corresponding to each
observation in a similar fashion (using CTRL + Enter between each observation). Once you
have entered the distance data, go to the analysis browser, and carry out an analysis of these
data using the half-normal detection function key.

Perpendicular distances in metres generated from a half-normal line transect model.

Line 1; length 5km
7.9 10.2 12.4 3.8 4.8 8.5 13.4 5.8 7.5 11.5
0.9 9.2 12.5 6.1
Line 2; length 2km
9.1 6.4 21.2
Line 3; length 6km
3.8 12.6 4.7 17.9 14.5 5.1 4.2 3.6
Line 4; length 4km
11.2 12.2 1.8 35.8 2.6 6.2 9.7 4.0 9.7
Line 5; length 3km
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6.9 5.1 3.3
Line 6; length 1km
6.0 18.4 3.8 2.9
Line 7; length 4km
3.3 2.9 3.7 13.2 1.0 2.3 13.4 16.2 3.8 19.3
11.1
Line 8; length 4km
0.8 1.5 0.7 10.2 10.0 0.6 7.6 4.4
Line 9; length 5km
1.0 1.0 1.2 4.6 9.2 15.8 1.9 3.3 3.7 5.8
5.9 4.8 12.4 7.6 10.6 17.8 5.8
Line 10; length 7km
0.0 0.6 2.0 6.9 7.2 7.7 10.2 1.3 1.7 8.4
13.4 19.4 12.8 13.2 6.3 10.0 12.4 19.5 1.7 3.1
3.3 19.4 16.6
Line 11; length 3km
no detections
Line 12; length 4km

1.0 6.6 12.4 4.9 15.4

(b) The full data set is in project Exercise3.zip Choose Open project and select zip file type.

 Experiment with keys other than the half-normal (uniform, hazard-rate and negative
exponential), to assess whether these data can be satisfactorily analysed using the wrong
model.

 For each key, determine a suitable truncation point, and decide on whether, and which,
adjustments are needed. Truncation points come under the data filter – click New… in the
Data Filter section and create and name your own data filter, including truncation. In the
example data filter below, the largest 10% of distances were truncated – you may want to
truncate at a specific distance, depending on the data.

 Given that the true density was 79.8 animals / km
2

for these data, how do bias and precision
compare between models?
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Additional question

2. Below are perpendicular distance data (m) from line transect surveys of capercaillie (a large
grouse) in Scotland. Total line length was 240km. The data are also in a text file capercaillie.txt
in the Distance project directory. In the text file, column 1 is the transect number, column 2 is the
transect length and column 3 is perpendicular distance. Columns are separated by tab
characters. Create a new Distance project and either enter the data by hand or use the Data
Import Wizard (Tools > Import Data Wizard) to import the data from the text file. Then decide on
a suitable model for the detection function and estimate bird density.

CAPERCAILLIE, MONAUGHTY FOREST

n=112

28.0 17.0 15.0 14.0 18.0 0.0 38.0 6.0 50.0 65.0
75.0 1.0 70.0 28.0 40.0 40.0 40.0 15.0 40.0 30.0
5.0 55.0 60.0 40.0 24.0 30.0 0.0 50.0 55.0 10.0
40.0 10.0 30.0 34.0 24.0 30.0 15.0 20.0 14.0 48.0
0.0 30.0 2.0 52.0 11.0 48.0 28.0 38.0 25.0 35.0
45.0 0.0 16.0 12.0 2.0 14.0 12.0 24.0 70.0 50.0
49.0 40.0 80.0 18.0 27.0 30.0 30.0 60.0 58.0 14.0
0.0 56.0 40.0 19.0 21.0 0.0 38.0 20.0 28.0 30.0
20.0 16.0 0.0 69.0 40.0 46.0 50.0 40.0 70.0 67.0
28.0 12.0 12.0 22.0 40.0 48.0 48.0 15.0 12.0 0.0
15.0 20.0 17.0 30.0 30.0 32.0 48.0 20.0 10.0 20.0
42.0 30.0
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Introduction to Distance Sampling

Exercise 4: Variance estimation for systematic designs, the bootstrap method

In the lecture describing measures of precision we explained that systematic survey designs
usually have the best variance properties, but obtaining good estimates of the variance is a difficult
problem for statisticians. In this exercise we give an example of a situation where the systematic
design gives a density estimate with much better precision than a random design. This means that
the usual variance estimators used in Distance, which are based on a random design, give
variance estimates that are far too high. The true variance is low, but the estimated variance is
high. We will see how to implement a post-stratification scheme that enables us to get a better
estimate of the variance. We also look at another case to see that the unstratified variance
estimates provided by Distance are usually fine for a systematic design: things only go wrong when
there are very strong trends in animal density, especially when the strong trends are associated
with changes in line length (e.g. the highest densities always occur on the shortest lines, or vice
versa).

We begin with the population and survey shown below. All the populations in this exercise are
simulated on a computer: they are not real data. Note the characteristics: extreme trends with very
high density on short lines and very low density on long lines. Additionally, the systematic design
(search strips are shaded) covers a fairly large portion of the survey area. These are the danger
signals that the usual Distance variance estimators might not work well, and a post-stratification
scheme should be considered.

The survey region is a triangle, with dimensions 1km by 1km. The systematically placed search

strips are shaded above.

Basic variance estimation, with bootstrapping

1. Open the Distance project Systematic_variance_2.zip.
2. On the Analysis tab, click New Analysis. Rename it Without post-stratification.
3. Under Model definition, click Properties. Rename the new model:

No_adjustments_plus_bootstrap.
4. Click the tab for Detection function, and click Adjustment terms. Select Manual selection so

that no adjustment terms are fitted. Select the Constraints button, and click No constraints.
These options will reduce the work that has to be done during bootstrapping.

5. Click the tab for Variance, and check the box for Bootstrap variance estimate: Select non-
parametric bootstrap. The box Resample samples should be checked (this means
resample transect lines). Leave the other settings at default, noting that there will be 999
bootstrap resamples conducted.

6. Click OK and then run the model. You can see the progress of the bootstrap in the bar at
the top. Wait a few moments until the bootstrapping is completed.
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7. Your analytic output should look like this:

Estimate %CV df 95% Confidence Interval
------------------------------------------------------

Half-normal/Cosine
D 2044.6 27.70 20.74 1161.0 3600.6
N 1022.0 27.70 20.74 581.00 1800.0

8. Because we have simulated these data, we know what the true values are. The true
number of animals in the survey region is N=1000, and the true density is D=2000 km-2

(1000 animals in an area of size A=0.5 km2). The point estimates are good, but what do you
think about the precision in the output above?

9. Find the bootstrapped confidence intervals for D and N, and check whether they are similar
to the confidence intervals above.

10. What percentage of the total density variance is attributed to encounter rate estimation and
what percentage to the detection function estimation?

Variance estimation for systematic designs using post-stratification

Recall we have a particular situation in which we have systematically placed transects, unequal in
length. Furthermore there exists an east-west gradient in animal density juxtaposed such that the
shortest lines are those that pass through the portion of the study area with the highest density. We
examine a means by which we can use post-stratification to produce a better estimate of the
variance in estimated density.

Post-stratification to improve variance estimation

The estimation of encounter rate variance in Exercise 4 used estimators that assumed the transect
lines were randomly placed throughout the triangular region. In our case, the transects were not
random, but systematic. In some circumstances, this can reduce the encounter rate variance a
great deal. The data we are working with is an example of this. There are very high densities on
the very shortest lines. In samples of lines collected using a completely random design, the
sample by chance might not contain any of these very short lines, or it might contain several. The
variance is therefore very high, because the density estimates will be greatly affected by how many
lines fall into the short-line / high-density region: we will get very low density estimates if there are
no short lines, but very high density estimates if there are several short lines. By contrast, in a
systematic sample, we cover the region methodically and we will always get nearly the same
number of lines falling in the high density region. The systematic density variance is therefore
much lower than the random placement density variance.

Although there is no way of getting a variance estimate that is exactly unbiased for a systematic
sample1, we can greatly improve on the random-based estimate by using a post-stratification
scheme. This works by grouping together pairs of adjacent lines from the systematic sample.
Each pair of adjacent lines is grouped into a stratum. The strata will improve variance estimation,
because the systematic sample behaves more like a stratified sample than a random sample.

Follow the steps below.

1. Open the Distance project we used in the previous section (Systematic_variance_2.dst; is
has the “.dst” extension because you uncompressed it minutes ago).

2. Click the Analyses tab, and click the “New analysis” button to create a new analysis.
Double click the grey ball and the Analysis Details Window should come up. Name the new

1 because it is effectively a sample of size 1 – only the first line position was randomly chosen, and the rest
followed on deterministically from there.

130  CREEM, Univ of St Andrews August 2016 Introductory Distance Workshop



analysis something like With post stratification.

3. Under Model Definition, click New. Change the name at the bottom of the dialogue box to
Poststratified_no_adjustments_no_bootstrap. (We don't want to conduct a bootstrap for our
poststratified data, because it would involve some extra confusion and is not necessary.) In
the Variance tab, click Advanced..., and select the option “Post-stratify, grouping adjacent
pairs of samplers”. Un-tick the option “Select non-parametric bootstrap”.

4. Click OK and then Run to run the analysis. How does the variance and confidence limits
compare with those you obtained in the previous section? What are the implications? Note
what percentage of the overall variance now comes from encounter rate and from
estimating the detection function, and compare this with the earlier percentages.

5. Now try the overlapping post-stratification option. A simulation study in Fewster et al.
(2009) concluded that its performance was very similar to, but marginally better than the
regular post-stratification. When the sample size of lines is small, it gives more post-strata
and so is to be preferred for that reason. Create a new analysis, called say With
overlapping post stratification, and then a new Model Definition for that analysis, in which
you choose the Advanced variance option “Post-stratify, with overlapping strata made up of
adjacent samplers”. How does the variance compare with those you previous obtained?
How do the degrees of freedom in the Estimation Summary – Encounter Rate page of
output compare with that from the previous question?

6. (Optional) If you wish, you can try manual post-stratification. This is good practice if you
need to do post-stratification for point transect studies. In this case you will have to add a
new field to the sample layer, and then set up a new model definition in which you tell
Distance to use post-stratification. Here goes:

a) Click the Data tab. Click the padlock button on the toolbar to unlock the data sheet for
modification.

b) On the left-hand outline, click Line transect. The data sheet expands to 20 rows, each row
corresponding to one line transect. This is the best format for the data sheet to be in when
entering a new stratum number for each transect.

c) Click on the cell corresponding to Line transect Label 1. Several buttons on the tool-bar
should become live. Click on the button corresponding to Append field after current. (The
button has an arrow pointing sideways then downwards.)

d) You are prompted for Field name: enter VarGroup to indicate that you are grouping lines
together for the purpose of variance estimation. Click Field type: Integer, and click OK.

e) You can now enter the line groupings for post-stratified variance estimation. Enter label 1
for lines 1 and 2; label 2 for lines 3 and 4; label 3 for lines 5 and 6; and so on, to finish with
label 10 for lines 19 and 20. You have now defined 10 strata, each containing two adjacent
transect lines from the systematic sample of lines.

f) After entering the column of VarGroup labels, click the padlock button again to lock the data
sheet.

g) Now we will analyse the post-stratified data. Click the Analyses tab. Create a new analysis
with a suitable name - .e.g, Manual post stratification

h) Create a new Model definition, with a suitable name. In the Estimate tab, click the button for
Poststratify. Select Layer type: sample, and Field name: VarGroup. This means that we
want to poststratify at the sample (transect) level, using our newly defined groupings
VarGroup to delimit the strata.

i) For the levels of resolution, select the following:

 Density: Global and Stratum

 Encounter Rate: Stratum only

 Detection function: Global only
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 Cluster size (not required): Global only

These settings ensure that it is only encounter rate variance that is affected by the post-
stratification scheme; the detection function is still pooled over all observations as before.

j) In the next field, enter Global density estimate is Mean of stratum estimates, and in the next
field select Weighted by Total effort in stratum. Do not tick the box saying Strata are
Replicates.

k) Click OK and run the new model. The point estimates should be the same as the previous
non-overlapping post stratification run.

Note: The precision of D and N are greatly improved in the post-stratified analyses. Note that
we are not getting something for nothing: the second analysis is giving us an answer much
closer to the true answer, while the first analysis was simply giving us the wrong answer. We
have not changed the true variance by our post-stratification scheme: we are just getting a
better estimate of the true variance. Because the data above were generated by simulation,
we can use repeated simulated surveys to check that the second answer is indeed close to the
true density variance over the repeats.

Systematic designs where post-stratification is not needed

The following simulated population does not exhibit strong trends across the survey region.
Otherwise, the strip dimensions and systematic design are the same as for the previous example.

Open the project Systematic_variance_1.zip. Add the new data column VarGroup before
conducting any analyses this time. With the augmented data, repeat the analyses you performed
on the Systematic_variance_2.zip project. Find the relevant outputs. Has the post-stratification
scheme been necessary in this case?
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Introduction to Distance Sampling

Exercise 5: Point transect exercises

1. Simulated point transect data from 30 points are given in project
PTExercise1.zip. These data were generated from a half-normal detection
function, and true density was 79.6 animals / ha. Experiment with keys other
than the half-normal (uniform, hazard-rate and negative exponential), to assess
whether these data can be satisfactorily analysed using the wrong model. For
each key, determine a suitable truncation point, and decide on whether, and
which, adjustments are needed. (Truncation points come under the data filter.)
How do bias and precision compare between models?

2. The projects Wren1.zip, Wren2.zip, Wren3.zip and Wren4.zip contain winter
wren data, collected at Montrave, Scotland in 2004. Each project corresponds to
a different method of data collection. Thirty-two points were defined through 33.2
ha of parkland (Fig. 1), and detection distances were measured in metres with the
aid of a laser rangefinder. Three types of point transect data were collected: 1.
standard five-minute counts; 2. the ‘snapshot’ method; and 3. a cue count
method. In addition, line transect data were collected (method 4), and territory
mapping was conducted, which gave an estimate of 43 wren territories (1.30
territories ha-1).

a) Select a single model for exploratory data analysis. Experiment with
different truncation distances w, and select a suitable value for each
method. Do you see potential problems with any of the data sets?

b) Try other models and other model options. Use plots, AIC values and
goodness-of-fit test statistics to determine an adequate model.

c) Record your estimates of density for each method. Record also the
corresponding confidence intervals. Compare your answers with those of
others in the workshop.

Figure 1: The study site at Montrave in Fife, Scotland. The dotted line is a
small stream, the thin dashed lines are tracks, and the thick dashed line a
main road. The 32 points are shown by crosses, and are laid out on a
systematic grid with 100m separation. The diagonal lines are the transects
used for method 4.
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3. The Sample Projects directory contains two point transect projects, Savannah
Sparrow 1980.zip and Savannah Sparrow 1981.zip. These were part of a large
data set collected in Arapaho National Wildlife Refuge, Colorado. For both data
sets, consider an appropriate truncation distance, decide on a suitable model for
the detection function, and estimate density, both for each stratum individually
and for the whole study area. You should include in your analysis an assessment
of whether the detection function can be estimated from data pooled across
strata, or whether separate estimates are needed per stratum. (This will be
covered in the lecture discussing stratification if you don’t already know how to do
it.)
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Introduction to Distance Sampling

Exercise 6: Automated Survey Design Exercises

1. Point transect survey of North-eastern Mexico

Reviewing the data

Extract and open the project MexicoUnPrj from the archive MexicoUnPrj.zip. This project
contains data from 4 states in North-eastern Mexico. Let's begin by reviewing the data. On
the top menu-bar select File, Project Properties. The General tab gives you information
about the location of the project file and its associated data folder (MexicoUnPrj.dat). The
Geographic tab gives you information about the default geo-coordinate system of the
geographic data, and the default map projection. The geo-coordinate system is used to
locate the geographic data (which is stored in decimal degrees of latitude and longitude) on
the earth's surface. The projection is used to convert these data from the curved surface of
the earth into a flat plane that can be used for displaying maps and designing surveys. The
resulting projection has linear units, such as metres or kilometres. If you are planning a
survey that will take place over a small geographic area, and you are inputting your data by
hand, then you don't need to worry about geo-coordinate systems or projections and can set
both these options to [None]. In this example, however, the survey area is quite large and
the projection chosen will make some difference to the results. Click Cancel to close the
Project Properties window without saving any changes you have made.

Click on the Data tab of the Project Browser to view the Data Explorer.. In the left-hand
pane, under Data Layers, you can see that there are four layers in the project: “Mex”,
“MexStrat”, “Grid1” and “Grid2”. You can tell the layer types by looking at the icons beside
the names: Mex is a Global layer, MexStrat is a Stratum layer and Grid1 and Grid2 are
Coverage layers. When you open a new project, the Global layer is selected by default, so
the layer Mex is now selected. Click on the Data Layer Properties button on this tab (7th
button from left) to find out more about this layer. The Layer Properties window opens, and
under the Geographic data tab, you can see that the geographic data is stored in a
shapefile called Mex.shp in the data folder, and that the shapes in this layer are Polygons
(i.e. solid shapes). Click Cancel to return to the Data Explorer.

In the right-hand pane of the Data Explorer, you can see its’ fields: ID, Label, Area and
Shape. There is one record, with ID = 1. The Shape field holds the geographic information
for that record. Because this layer holds polygons, the shape record has the word "Polygon"
in it. Double click on this word to open the Shape Properties window. This is where you
edit the geographic information inside Distance (an alternative is to edit the shapefile
Mex.shp from outside of distance, using a GIS package such as ArcGIS). Click Cancel to
return to the Data Explorer.

The coverage layers Grid1 and Grid2 contain a grid of points that will be used for determining
probability of coverage for our survey designs. If you click on “Grid 1” in the left-hand pane
of the Data Explorer, its records open in the right-hand pane, and you can see that it has 177
records. A better way to look at the grid points is to view them in a map. Click on the Maps
tab in the Project Browser. Click on the New Map button (3rd button along) to create a new
map. Double-click on the words "New Map" to edit the name of the map, and call it "Grid 1".
To view the map, click the View Map button (5th button along), or double click on the map's
ID. A Map Window opens.

The map starts life blank. You add layers to the map by clicking the Add Layer to Map
button (7th button along). Click this button and select "Mex" from the list of layers. Then
click the button Add Layer button again and select "Grid 1" from the list. Now you can see
the grid points.
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You could also add the points from Grid 2 to the same map. If you do this, you will see that
the grid points for Grid 2 are much closer together than those for Grid 1. (Grid 2 was
generated with a spacing of 20 km, while for Grid 1 the spacing was 50km.) The points for
Grid 2 obscure those from Grid 1 – you can change the order of the map layers by clicking
on a the legend "Grid 2" in the left-hand pane of the map and holding the mouse button down
while you drag it down to below "Grid 1". Click the [X] button in the top right corner of the
Map Window to close the map. (Say "Yes" if it asks you to save changes.)

In the Data Explorer, click on the MexStrat layer to see those data. You can see that there
are 4 strata. If you want to see where they are, you could create a new map in the Maps tab
and add the MexStrat layer to the map. If there are layers on the new map that you don't
want, you can remove them with the Delete Selected Layer button in the Map window.

When you've finished exploring the data, move on to create a new design.

Creating a new design

Click on the Designs tab of the Project Browser. To create a new design, click the New
Design button (1st one after the word "Design:"). A new record appears in the left-hand
pane, called "New Design". Double click on the name, and edit it to call the new design "150
random points". If you need more room, click and drag to the right the vertical splitter that
divides the Designs window into two. Click the Show Details button (3rd one after the word
"Design") to open the Design Details window. Look under "Type of design" to see the
sampler and design class; the default sampler is "Point" and the default design class is
"Simple Random Sampling". Click the Properties button to set the properties for this
design. The Design Properties window opens. The options you see on the design
properties tabs depend on the type of design. In this example, choose the following options:

 Under Stratum layer, choose the stratum layer "MexStrat".
 Under Design coordinate system, make sure the box "Same coordinate system as

stratum" is unchecked. The projection should say "Plate Carree" and the units
“Metre”.

 In the Effort Allocation tab, under Edge Sampling select the “Plus” option. Uncheck
the box "Same effort for all strata". A list of the four strata in the MexStrat layer
appears. Under "Allocation by stratum", click the "Percentage from" radio button, and
enter "150" as the number of points. In this example, we will put most of our effort
into the two Baja strata (perhaps because this is where we think most of the animals
of interest live). Under "Effort %" enter 10 for Sinaloa, 10 for Sonora, 40 for Baja Sur
(south) and 40 for Baja Norte (north).

 In the Sampler tab, select Kilometre for the point sampler radius units. Let's imagine
we're surveying for a very vocal species and that our truncation distance will be 5km,
so we enter 5 under radius (for this example we'll assume same sampler properties
for all strata).

 Lastly, in the Coverage Probability tab, click on "Estimate by simulation" and enter
100 as the number of simulations. This is far too few for an accurate simulation, but
will do for the purposes of demonstration. Under grid layer, choose "Grid 2", which is
the one with the grid points closer together.

Now click OK to close the Design Properties window. The properties window closes and
we are back with the design details.

Automated generation of new surveys

Click the Run button on the Design Details window. A window pops up offering you two
choices: (1) Calculate coverage probability statistics, and (2) Generate a new Survey.
Choose the second option, and give the new Survey a useful name like "150 points survey"
and the new layer a name like "150 points". Then click OK. A Survey Details window
opens, and the status bar at the top of the Distance window says "Running Survey". At this
point you have to be patient while the survey runs. Distance is creating a set of randomly
located survey points, based on the design. When it is finished, the Survey Details Results
tab opens, and you can review some statistics about the new survey. Click the "Next >"
button to see a map of the points – you should be able to see that there are more in the
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Western strata (Baja) than the eastern. Click “Next>” again to see a list of the points, with
latitude and longitude for each. (You could, for example, use this to make a survey plan to
take into the field. To copy this text to another file, press the “Copy current window” button,
4th from the left on the top toolbar. Then open, say, a Word document and click Paste to
copy it there. You can also copy the map of points by displaying the map and pressing the
copy button, or choosing the menu item Survey – Results | Copy Map to Clipboard)

Click on [X] to close the Survey Details window, and click on the Surveys tab of the project
browser. You can see that your new survey has been added there. If you select it and click
the "Show Details" button (3rd from left after the word "Survey") you get back to the Survey
Details window Results tab. Click on the Inputs tab and then Properties ... button. Under
Data Layers, you can see that the new Sample data layer "150 points" has been entered as
the lowest sample layer. Close the Survey Properties and Survey Details windows, and
click on the Data tab of the Project Browser. You can see that the new sample data layer
"150 points" has been added below the "MexStrat" data layer.

Design statistics

Go back to the Design Details window for your design, and click Run again. This time,
choose the top option (Calculate probability of coverage statistics) and click OK. You have to
wait while Distance generates multiple simulated surveys and uses these to work out the
probability that each grid point will be covered by the survey. When it has finished, you can
see the results in the Results tab, and a map of coverage probability by pressing the "Next
>" button. In theory, this design should produce an even probability of coverage within
stratum. However, you can see that there is considerable variation. Why is this? What
would happen if you repeated the run with more simulation runs (say 500, or 1000)? (Before
you spend a lot of time running simulations with this project, read the next section.)

Working with projected raw data

There is a technical problem with the way the geographic data are stored in MexicoUnPrj.
Each time you view a map or run a survey design, the data have to be projected from the
latitude and longitude format in which they are stored using the projection you have specified
(Plate Caree in this case). This takes some computer time, so if you’re doing lots of survey
design work there’s a trick to make things more efficient. The trick involves projecting the
raw data files.

We used ArcGIS to project the shapefiles in MexicoUnPrj using the Plate Caree projection,
and stored this new data in the project MexicoPrj. So rather than being stored in latitude and
longitude, the data in MexicoPrj is stored in meters. Run a second instance of Distance, and
then extract and open the project MexicoPrj. Look under the Project Properties, and you
will see that the GeoCoordinate system and Projection are both set to [None], and that the
units are meters. So, we’ve projected the raw data, and so long as we project all the data
layers the same way we don’t need to tell Distance anything about the coordinate systems
used.

As a check that the data really are projected, go the Data Explorer and double-click on the
global layer’s Polygon record. The first value is something like x= -12594701 y=3230255 –
this gives the number of meters of that point on the polygon from some reference point on
the earth. If you do the same thing in the MexicoUnPrj project, you’ll see that the first value
is something like x=-113 y=29, which is the latitude and longitude of that point.

If you’re going to do lots of experimenting with the Mexico data this evening, or at home, it’s
better to use the MexicoPrj project, as you’ll find the probability of coverage simulations run
quite a bit faster. Meanwhile, move on to the next exercise.
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2. Entering geographic data into Distance, and generating Coverage grids

The purpose of this exercise is to show you how to enter geographic data by hand into
Distance, and how to generate Coverage grid layers.

Create a new project and enter data

On the top menu-bar select File, New Project (or click the toolbar button). In the Create
New Project dialog box give it the File Name “Trapezium” and then click on Create. The
new project setup wizard starts up. Under “I want to”, select the option to “design a new
survey”, and click Next. Then click Finish.

The Project Browser will open up, showing the Data tab. Click on the menu File | Project
properties, and look under the Geographic tab to confirm that there is no geographic
coordinate system for this project (i.e. non-earth referenced), and that the default units are
metres. Click OK to close the Project Properties window.

In the Data tab of the Project Browser, you can see that Distance has created a global data
layer called Study Area, with default fields ID, Label and Shape. Double click on the word
"Polygon" to open the Shape Properties window to edit the new survey region. Click on the
Insert Point button 4 times and fill in the following (X,Y) coordinates: (0,0), (0,100), (120,20)
and (120,0). Click OK to return to the Data Explorer.

Generate a coverage grid layer

To generate a coverage grid layer click on the Create New Data Layer button (5th from left)
in the Data tab of the Project Browser. Enter “TrapGrid” as your Layer Name and set the
Parent Layer to “Study Area” and the Layer Type to “Coverage”. You should now be able to
click on the Properties… button. In the Grid Properties that pops up set the “Distance
between grid points” to 2.5 and the “Units of distance” to “Metre”. Once you press OK you
should proceed to add the grid points to the layer. This may take a few moments.

Create a new map on the Map tab of the Project Browser and add your new global and
coverage layers to take a look at them.

Creating a new design

Click on the Designs tab of the Project Browser and then the New Design button.
Rename your design "equal angle zigzag" and then click the Show Details button to open
the Design Details window. Select the “Line” sampler and set the design class to "Equal
Angle Zigzag". Click the Properties button to set the following properties for this design:

 As the Trapezium survey region is non-earth referenced you don’t need to make any
changes on the General Properties tab.

 In the Effort Allocation tab, under “Effort determined by” select the Sampler angle
option. In the “Allocation by stratum” section set the Line length units to be Metres.
Make sure the “Update effort in real time” check box is ticked. As there is only one
survey stratum it does not matter whether the "Same effort for all strata" check box is
ticked or not. The "Absolute values" radio button is the only one available when effort
is determined by sampler angle. Enter 75 in the “Angle” (measured in degrees)
column of the table. The “Length” column should now read 463.644. The accuracy of
this approximation of zigzag length depends on the shape of the survey region, but
should be relatively accurate for convex survey regions.

 In the Sampler tab, set the width to 1 meter.
 Lastly, in the Coverage Probability tab, click on "Estimate by simulation" and enter

100 as the number of simulations. Under grid layer, choose previously created
"TrapGrid".

Click OK to close the Design Properties window and return to the design details.
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Design statistics

Run your design to work out the coverage probabilities - this design will take a while to run!
In the second page of the Design Details Results tab that opens when its finished, take a
look at the coverage probabilities map. Note how uneven these probabilities are and how
they increase as the trapezium height decreases for the equal angle zigzag design.

Additional investigations

If you are particularly interested in zigzag surveying, you might want to come back to this
exercise after completing exercise 3, and compare the coverage probabilities of the three
different types of zigzag designs. You can do this when you get home. For now, skip ahead
to exercise 3.

For work on your own:
Create two new designs - one for the equal spaced zigzag and one for the adjusted angle
zigzag. To facilitate comparisons, you want to set properties for both that are somewhat
equivalent to those for the equal angle design. You can see the mean trackline length for the
equal angle design in its Results tab (about 460 metres). You can then set the effort
allocation for the two new designs to be the same as this value. Make sure that the
Coverage probability tab shows “Estimate by simulation” and that you have an appropriate
Grid Field Name.

Try creating a few surveys for each design, so you can see how they differ. Then run the
coverage probability simulations. How do the coverage probabilities for the 3 designs differ?
You may need more simulations to see a strong difference between the equal spacing and
adjusted angle design.

3. Systematic parallel line aerial survey of marine mammals in St Andrews bay

Reviewing the data

Open the project archived in StAndrews.zip. This project contains the survey region for an
aerial survey of porpoise, common dolphins and seals in and around St Andrews bay. (For
locals: the nearer St Andrews bay region has been extended in an easterly direction out past
bell rock, as there are some pockets of deeper water out there that are of interest with regard
to the distribution of cetaceans. The survey region has a chunk missing due to a no-fly zone
around Buddo Ness, just below Carnoustie). To take a look at the survey region create a new
map in the Maps tab and add the layer StAndrews to the map.

The small survey plane permits a total flight time of approximately 250 km (excluding the
flight time to and from the landing strip in Fife Ness, just down the coast). A systematic line
sampling design is going to be used. The survey plane permits easy movement between
survey lines, but it would still be efficient to spend as much of the 250 km flight time on effort
surveying rather than on movement between the sampler lines. The aim of this exercise is to
decide on a systematic line spacing that gives about 200 km on-effort trackline with the total
trackline length constrained to 250 km. To do this create a number of systematic line
sampling designs with different line spacings, generate the design statistics for these designs
and then the statistics for the total trackline length to the on-effort trackline length for different
designs.

Before proceeding to the design stage you need to generate a coverage grid layer, as this
will be needed to generate design statistics.
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Generate a coverage grid layer

To generate a coverage grid layer click on the Data tab of the Project Browser and then the
Create New Data Layer button (5th from left). Enter “Grid5” as your Layer Name and set the
Parent Layer to “StAndrews” and the Layer Type to “Coverage”. You should now be able to
click on the Properties… button. In the Grid Properties that pops up set the “Distance
between grid points” to 5 and the “Units of distance” to “Kilometre”. (This is too far apart for
estimating probabiltiy of coverage, but we know coverage is even for this design, so
choosing a wide spacing makes the simulations run faster.) Once you press OK you should
proceed to add the grid points to the layer. This may take a few moments.

Now create and generate a couple of designs with a spacing of your choice (some suggested
spacings include 4.5, 5, 5.5 & 6 km)

Creating a new design

Click on the Designs tab of the Project Browser and then the New Design button.
Rename your "New Design" something like "systematic line test" and then click the Show
Details button to open the Design Details window. Select the “Line” sampler and set the
design class to "Systematic Random Sampling". Click the Properties button to set the
following properties for this design:

 On the General Properties tab under Stratum layer, the StAndrews stratum layer
should be selected. Under Design coordinate system, the design coordinate system
should be “Non-earth referenced”. (The data have already been projected from the
OSGB 1936 geo-coordinate system using the transverse mercator projection – the
same trick we used for the MexicoPrj project.)

 In the Effort Allocation tab, under Edge Sampling select the “Minus” option. In the
“Allocation by stratum” section set the Line length units to be Kilometres. Make sure
the “Update effort in real time” check box is ticked. As there is only one survey
stratum it does not matter whether the "Same effort for all strata" check box is ticked
or not. Click the "Systematic line spacing" radio button and enter the line spacing in
the “Spacing” column of the table. When you enter a 5 km spacing for instance the
“Length” column should then read 226.203 and the “Samplers” column 8. The
accuracy of this approximation of on-effort line length and total number of line
samplers depends on the shape of the survey region, but should at least give you
some indication of what to expect.

 In the Sampler tab, select Kilometre for the line sampler width units. Set the
truncation width to 2 km.

 Lastly, in the Coverage Probability tab, click on "Estimate by simulation" and enter
100 as the number of simulations. This is too few to give accurate coverage
probabilities, but sufficient for the on-effort and total trackline length statistics. Under
grid layer, choose previously created "Grid 5". Make sure the Grid field name is the
same as your design name.

Click OK to close the Design Properties window and return to the design details.

Design statistics

For each design run Distance generates multiple simulated surveys and uses these to work
out the statistics for on-effort and total trackline length. Run your designs and in the Design
Details Results tab that opens review the statistics to decide on suitable systematic line
spacing.

Automated generation of new surveys

To see an example survey, go back to the Design Details window for your selected design
click Run again this time choosing the “Generate a new Survey” option. The second page of
the survey results displays a map of the survey region with the systematic lines
superimposed. You can add this map to the Map browser and manipulate it there by clicking
on the 6th button on the Survey map results page.
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Introduction to Distance Sampling

Exercise 7a: Analysis of Stratified Data

The Data

The Distance project Stratify exercise contains data from a stratified survey of
Antarctic minke whales. The data are “exact” insofar as they are calculated directly from
the estimates of radial distance and angle recorded by the observers. While angle
boards and reticule binoculars were used for estimation of angles and distances when
possible, the transitory nature of cues (usually blows) and the pitch and roll of the
vessel, among other things, leads to in errors in estimating angles and distances.
Angular errors are typically of the order of a degree or two; the coefficient of variation of
distance estimation errors is typically of the order of 10%.

The two strata were surveyed by different vessels at the same time. Because the
whales tend to be found in high densities against the ice edge, where they feed,
densities in southern strata are typically higher than those in northern strata. In fact this
is the primary reason for using a stratified survey design. It is also the reason for
covering the southern strata more intensely; in this survey the transect length per unit
area in the southern stratum, is more than 2.5 times that in the northern stratum.

Here are pictures of the sort of design used and a typical density gradient. The irregular
bottom border is the ice-edge; the “steps” define the boundary between southern and
northern strata; dotted lines are transects; solid dots are detections.

Analysis Exercises

Begin by opening the project from its archive Stratify exercise.zip. The project
contains one analysis specification, called “Full geog stratification”. This is a fully
stratified analysis of the data. Seven equal perpendicular distance intervals, truncation
at 1.5 nautical miles (nm), and a hazard rate detection function form with no adjustment
terms are used to estimate the detection function. As the focus of these exercises is
stratification, do not investigate other perpendicular distance intervals and detection
function forms; the given models are adequate. Use the Analysis browser to
familiarise yourself with the details of this analysis specification.

1. Having done that, run the analysis “Full geog stratification”. Look at the results, and
note the AIC statistics from each detection function fit.
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2. To stratify f(0) or not to stratify?: Create a new analysis identical to “Full geog
stratification” by clicking the New Analysis icon in the Analysis tab of the Project
browser after selecting the existing analysis. The new analysis will be a copy of the
existing one.

Create a new model definition for this new analysis by going to the Inputs tab and
highlighting the “haz rate+no adj full strat” model, then clicking the New tab. This will
copy the existing model definition – modify the new model definition so that f(0) is to
be estimated from the pooled strata (click the Detection function x Global cell of
the table on the Estimate tab of the Model Definition Properties window you get
after clicking New). Give this new model definition a suitable name and then click
OK.

Run the new analysis and look at the output. By comparing the AIC from this analysis
with the sum of the AICs from the analysis “Full geog stratification”, and considering
the fits of each detection function, decide whether or not to pool strata for estimation
of f(0).

If you have time, here’s a more difficult question.

3. Create an analysis without any stratification and estimate density using it. Why is the
density estimate so much higher than those from 1. and 2. above?

142  CREEM, Univ of St Andrews August 2016 Introductory Distance Workshop



Introduction to Distance Sampling

Exercise 7b: Analysis of Clustered Data

The Data

Cluster exercise.zip contains “exact” perpendicular distance and cluster size data from
a survey of Antarctic minke whales (the same data as are in the project file stratify
exercise.zip).

Open the Cluster exercise.zip project in Distance. Use the data explorer to familiarise
yourself with the data (click the Data tab in the Project Browser, followed by the
Region, then Line Transect, then Observation symbols in the left window). Ignore the
“Cluster strat” data column for the moment, it is dealt with below.

Analysis Exercises

This exercise will allow you to explore some of the different methods of dealing with
clustered data, as discussed in the lecture. The following methods will be used:

 Regression
 Truncation
 Post-stratification

The project contains one analysis specification, called “E(s) by ln(s)_g(x)”. Use the
Analysis browser to familiarise yourself with the details of this analysis specification.
This analysis uses a regression of the log of school size (s) against the estimated
detection function to estimate mean school size (look under the Cluster size tab in
Model Definition Properties). Seven equal perpendicular distance intervals, truncation
at 1.5 nautical miles (nm), and a hazard rate detection function form with no adjustment
terms are used to estimate the detection function. As the focus of these exercises is
mean cluster size estimation, do not investigate other perpendicular distance intervals
and detection function forms; the given models are adequate.

Using regression

1) Run the analysis “E(s) by ln(s)_g(x)”. Look at the results and the cluster size
estimation pages in particular.

a) Is the regression method estimate of E(s) bigger than the observed mean cluster
size?

b) What percentage of the variance of the density estimate is due to cluster size
estimation?

Using truncation

2) Using the fitted detection function, decide on an appropriate point at which to
truncate the data in order to use the mean observed cluster size as an estimate of
E(s). Create a new analysis, identical to “E(s) by ln(s)_g(x)” except that it should use
the truncation method to estimate E(s). To do this, click the “New Analysis” icon in
the Analysis browser after selecting the existing analysis, then add a new Data
filter in which the right truncation for cluster size estimation on the Truncation tab
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has been set appropriately. Create a new Model Definition where the mean of the
observed clusters, rather than the regression method, is used (specified in Model
Definition Properties/Cluster size). Having run the analysis, look at the cluster
size estimation pages.

a) Why is the “Mean cluster size” on the Cluster size/Global/Estimates page
different from the mean cluster size in analysis 1 above?

b) Why is the standard error of “Mean cluster size” in this analysis larger than that
of the “Expected cluster size” in analysis 1 above? (Hint: look at the sample
sizes.)

Using post-stratification by cluster size

3) Now we come to the “Cluster strat” column in the Observation layer of the data. It
was added after the data were entered and is just an indicator column for
stratification on the basis of cluster size. All observations with cluster size 1 have
been defined to be in cluster stratum 1 and hence have 1 in the “Cluster strat”
column. Similarly for cluster size 2. Due to small sample sizes it was not possible to
create separate strata for cluster sizes of 3 and above. Therefore, all observations
with size 3 or greater have been put in cluster stratum 3 and hence have 3 in the
“Cluster strat” column.

a) Use the “Cluster strat” column as a basis for performing an analysis post-
stratified by cluster size. Do this by creating a new analysis with a new Model
Definition that uses post-stratification at the Observation level. Fit a detection
function pooled across strata, but estimate mean cluster size separately for each
stratum (see the picture below for help). There should be no size bias within the
strata, so theoretically it should be sufficient to use the mean of the observed
cluster sizes for each stratum. Once the analysis is run, note the mean cluster
size for the third stratum.

b) However, when forced to use strata that contain a range of cluster sizes due to
small sample sizes (such as stratum 3 in this case), you may suspect that size

144  CREEM, Univ of St Andrews August 2016 Introductory Distance Workshop



bias is still present. It is possible to use the regression method to check this.
Create another post stratified analysis which uses the regression method to
estimate E(s) in each stratum (again, estimate a pooled detection function and
separate cluster size estimates). Compare the regression estimate of E(s) with
the mean cluster size (the mean should be identical to the estimate you found in
3(a)). Does it suggest that size bias is present in this third stratum?

c) Another consideration when using regression with post stratification is the
following: is the detection function you are using for the regression the correct
one (recall that the explanatory variable in the cluster-size regression is g(x))? In
other words, in 3(b) the pooled detection function was used for the regression in
the third stratum. However, if you suspect you have size bias in the first place,
then you would expect the detection function for larger and smaller cluster sizes
to be different - you would expect the detection function for larger cluster sizes to
have a wider shoulder (i.e. larger effective strip width and a smaller f(0)).
Therefore, perform an analysis where you estimate a detection function for each
stratum. Look at the results – are the detection functions different between
strata? Do they seem plausible? Are you satisfied with the sample sizes used to
estimate the detection functions?

Overall question: consider all the analyses conducted – which would you use for this
dataset?
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Introduction to Distance Sampling

Exercise 8: Covariates in the detection function

This exercise consists of four datasets of increasing difficulty. Everybody should work
through the first dataset, and the other datasets can be examined later if you wish, or
you may work on them when you complete the first analysis. The first analysis will
show you the rudiments of conducting an analysis, while the remaining analyses take
you deeper into the heart of understanding multiple covariates.

1 A whale of a dataset
Rather than relaxing here in the serenity and tranquility of the Scottish coast, image
instead that you are a research
biologist collecting distance
sampling data during December
on gray whales as they migrated
through the Aleutian chain near
Unimak Pass en route to their
wintering grounds off Baja
California (some luckier, more
senior researcher, got the job of
data collection on their wintering
grounds). These data will now be
the focus of your attention for this
exercise examining the potential
utility of covariates in explaining variation in animal detectability.

Detections were of individuals (not groups), and you chose to record not only distance,
but also time of observation (at this latitude at this time of year, the crew was restricted
to making observations between 1000 and 1500 during the day). However, because of
the low sun angles during much of this time, there was some reason to believe that
time of day might play a role in whale detectability. [In what manner might you wish to
incorporate this covariate?]

Under extreme weather conditions, observer motion sickness can influence the
performance of the observers. An additional covariate, "motion sickness tablet
effective dosage at time of observation (MSTDO)" was recorded each time a whale
was detected.

The data are available for your inspection in the Distance project adv_practical_1.dst.
Notice the extreme precision with which the perpendicular distances were measured
(how do you suppose this could happen on a rolling ship in the Bering Sea?).

Describe your candidate model set (what models did you construct) and your rationale
for the final estimates you provide. You may also comment upon the use of time of
observation as a measure of glare from oblique sun angles.

If you have been successful in performing the analysis of this dataset (which can now
be revealed to have been simulated), you can continue to sharpen your skills in using
covariates in your analysis of distance sampling data by exploring two other data sets,
that are considerably more elaborate.

2 Golf tees Data

2.1 The data and distance project

The data come from a survey of clusters of golf tees in grass, conducted by 3rd and 4th

year statistics students at the University of St Andrews. It was conducted as a double
platform survey; double-platform methods are described later in the workshop and so
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we will only use detections recorded for one observer (or platform) for the purposes of
this exercise.

Assume that all the data were collected on one 210 metre long transect line, and that
this comprises the study area. There were 250 clusters of tees in the study area and
760 individual tees in total.

The population was independently surveyed by two observer teams, of which we will
use the data recorded by observer 1. The following data were recorded for each
detected group: perpendicular distance, cluster size, observer (team 1 or 2), “sex”
(males are yellow=1, females green=0 and golf tees occur in single-sex clusters), and
“exposure”. Exposure was a subjective judgment of whether the cluster was
substantially obscured by grass (exposure=0) or not (exposure=1). The lengths of
grass varied along the transect line, and the grass was also slightly more yellow along
one part of the line compared with the rest.

The data are stored in the distance project GolfteesExercise. Open the project. Notice
that there is already a data filter and several model definitions set up. To avoid
overwriting these as they will be used in the double platform exercise, first create a new
‘set’ on the Analysis tab and then create a new analysis for that set. Open the model
details for the new analysis. First, we need to select only the sightings detected by one
observer – we will use observer 1 sightings. Create a new data filter and on the Data
Selection tab in the data filter, click ‘+’. Choose Layer type ‘Observation’ from the
dropdown menu that appears when you click on the cell. Under Selection criteria type
‘observer=1 AND detected=1’. This selects only the detections made by observer 1.
The data is already truncated at 4 metres and we will use the same truncation distance.

2.2 CDS analysis of the golf tee data
Now create a new model definition. Start by performing a conventional distance
sampling (CDS) analysis using a half-normal key function. To do this, edit the new
model definition. Under the Analysis Engine, choose CDS and use the default setting
for the detection function. Give it a sensible name and run it.

Look at the results (in the Analysis details, Results tab). Don’t worry about the
warning – this is because there is only one transect and so the encounter rate variance
is estimated assuming that the observations are from a Poisson distribution so that

nnV )(ˆ rather than from inter-transect variation. Make a note of the estimated
abundance and associated coefficient of variation (CV). Also have a look at the
percentage of variance that was due to the detection function.

2.3 MCDS analysis of the golf tee data
Create a new analysis and a new model definition. This time choose the MCDS
analysis engine.
Check that under the Detection function tab, the selected key function is half normal
and under the Adjustment terms button we have manual selection of zero adjustment
terms. MCDS analyses are much harder for the analysis engine to fit than single
covariate ones (and a different algorithm is used). In general, it is better to avoid
automated selection of adjustment terms and use manual selection instead. Start with
zero adjustments terms, and gradually build up 1, 2 etc. checking AIC or one of the
other criteria to see if this gives a better fit. It is also a good idea to tick the option in the
Misc. tab to ‘Report results for each iteration of detection function fitting routine’ (it is
ticked by default for the MCDS engine) – this will help you to diagnose any problems
that may occur during fitting.

There were 3 additional covariates recorded along with perpendicular distance; cluster
size, sex and exposure. Obviously, sex and exposure are factor variables. Sometimes
cluster size can be treated as both a factor variable or as a continuous variable: if there
are only a few cluster sizes then it can be treated as a factor; however, if cluster size
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ranged over a large number of values it would have to be treated as a continuous
variable. In this data, cluster sizes ranged from 1 to 8 and it is debatable as to whether
you would want to treat it as a factor variable as there are very few large clusters
detected. When including cluster size don’t forget to tick the cluster size box on the
Covariates tab – this tells Distance that this covariate is the cluster size covariate.
When cluster size is included as a covariate, Distance uses a ‘Horvitz-Thompson-like’
estimator of abundance (this will have been covered in lectures). In this case, Distance
changes a number of options in the Estimate and Cluster size tabs. In Estimate, it
changes the ‘Sample definition’ option and doesn’t allow stratification and in Cluster
size it removes all the options.

Select each of these terms in turn and also in combination on the Covariates tab. After
running a model, look at the results. The presentation of results is like that in CDS
analyses, with a Log tab where any warnings or error messages are written, and the
Results tab which contains details of the analysis. Make a note of the AIC value and
look at the detection function plots – notice the difference in the detection function plots
when the covariate is specified as a factor variable or a continuous variable.

Once you have decided on the best model, make a note of the estimated abundance,
associated CV and percentage of variance accounted for by the detection function.
How has this changed?

3 Dolphin Sightings Data

This exercise is optional – so feel free to switch to your own data if you have some. In
this example there are several potential covariates and no ‘right’ answers!

3.1 Reviewing the data

In this example we have a sample of eastern tropical Pacific (ETP) offshore spotted
dolphin sightings data, collected by observers placed on board tuna vessels (the data
were kindly made available to us by the Inter-American Tropical Tuna Commission –
IATTC). In the ETP, schools of yellow fin tuna commonly associate with schools of
certain species of dolphins, and so vessels fishing for tuna often search for dolphins in
the hopes of also locating tuna. For each school detected by the tuna vessels, the
observer records the species, sighting angle and distance (later converted to
perpendicular distance and truncated at 5 nautical miles), school size, and a number of
covariates associated with each detected school. Many of these covariates potentially
affect the detection function, as they reflect how the search was being carried out.

A variety of search methods are used to find the dolphins, but currently the most
commonly used are 20x binoculars from the crow’s nest, 20x binoculars from another
location on the vessel, from a helicopter, or through “bird radar” (high power radars
which are able to detected seabirds flying above the dolphin schools). In the example
dataset these are coded as 0, 2, 3, and 5, respectively. Some of these methods may
have a wider range of search than the others, and so it is possible that the effective
strip width varies according to the method being used.

For each sighting the initial cue type is recorded. This may be birds flying above the
school, splashes on the water, floating objects such as logs, or some other unspecified
cue. In the example they have been coded as 1, 2, 4 and 3, respectively.

Another covariate that potentially affects the detection function is sea state, as
measured by Beaufort. In rougher conditions (i.e. higher Beaufort levels), visibility
and/or detectability may be reduced. For this example Beaufort levels are grouped into
two categories, the first including Beaufort values ranging from 0 to 2 (coded as 1) and
the second containing values from 3 to 5 (coded as 2).

The sample data encompasses sightings made over a three month period: June, July
and August (months 6, 7 and 8, respectively).
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Begin by extracting and opening the project from the archive Dolphin.zip. Once it is
open, you will see the Project Browser, from which you can have a look at the data
(Data tab).

3.2 Analysis of Dolphin Sightings data

Start by running a set of conventional distance analyses. Are there any problems in the
data and if so how might you mitigate them? (Hint – check out the q-q plot, and also try
dividing the data into a large number of intervals in the Model Definition | Detection
Function | Diagnostics.)

As there are a number of potential covariates to be used in this example, try fitting
models with different covariates and combinations of the covariates. All of the
covariates in this example are factor covariates except cluster size.

Keep in mind that this is a large dataset (> 1000 observations), and hence estimation
may take a while, particularly if you are allowing up to 5 adjustment terms to be fitted. It
will be generally more efficient to start fitting models without any adjustment terms, and
then adding one at a time if appropriate. Consider also whether to standardize by w or
by σ (or try both!).

You will likely end up with quite a few models, so think about how you are going to
name and organize them in the Project Browser (for analyses) and Analysis
Components window (for model definitions).

Discuss your choice of final model (or models) with your neighbours - did you make the
same choices?

4 Passerine data from Marques et al. (2007)

The data from the Auk paper by Marques et al. (2007) is also available on your data
stick. It is zipped as the project fTAMAUK07.zip. See if you can produce results
comparable to those presented in the manuscript (also on your data stick).
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Introduction to Distance Sampling

Exercise 9a: Analysis with the use of multipliers

The Problem

The question is how to estimate of the density of sika deer in a number of woodlands in
the Scottish Borders. These animals are quite shy and often will be alert to the
presence of an observer before the observer detects them, making surveys of the deer
challenging. As a consequence, indirect estimation methods have been applied to this
problem. In this manner, an estimate of density is produced for some sign generated by
deer (faecal pellets) and this estimate is transformed to density of deer by
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We will produce a pellet group density estimate, then adjust it accordingly to account for
the deposition and decay processes operating during the time the data are being
acquired. We will also take uncertainty in the production and decay rates into account
in our final estimate of deer density.

The Data

Data from 9 woodlands were collected according to the survey design shown below
(note differing amounts of effort in different woodlands based on information derived
from pilot surveys).

In addition to these data, we also require estimates of the defecation rate. From a
consultation with the literature, we learn that sika deer deposit 25 pellet groups daily.
The literature source did not provide a measure of variability of this estimate. During
the course of our surveys we also followed the fate of some marked pellet groups to
estimate the disappearance (decay) rates of a group. A thorough discussion of
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methods useful for estimating decay rates and associated measures of precision can be
found in Laing et al. (2003) [found on your thumb drive].

There are many factors that might influence both deposition and decay rates, and for
purposes of this exercise we will make the simplifying assumption that decay rate is
homogeneous across these woodlands; with their mean time to decay of 163 days and
a standard error of 13 days. However if you were to conduct a survey such as this, you
would want to investigate this assumption more thoroughly.

Pay a visit to http://www.wcsmalaysia.org/analysis/Nest_dung_decay.htm where Mike
Meredith of Wildlife Conservation Society in Malaysia thoroughly describes an analysis
to estimate decay rates for animal nests or dung.

Analysis Exercises

Use the Distance project Deer pellets.zip for the following analyses.

1. Adjust the multipliers in the project (replacing the place-holders in the project,
with values provided in the previous section of this exercise).

2. Fit the usual series of models (uniform, half normal, and hazard rate) models to
the data.

3. Select the Multipliers button in the Model Definition Properties to specify the
layer and the field in the project database for the multipliers you wish to employ
(along with their measure of precision).

4. Produce estimates using the woodland as strata, pooling data across strata for
fitting the detection function, but using woodland-specific encounter rate to
produce woodland-specific estimates of density.

5. Produce an overall estimate of density as mean of woodland-specific densities
weighted by the effort allocated within each woodlot.

6. Make special note of the components of variance (contribution of detection
function, encounter rate, decay rate, and what happened to defecation rate
component?) in each of the strata.
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Introduction to Distance Sampling

Exercise 9b: Cue Counting Analysis Exercise

This practical involves analysing an aerial cue counting survey of minke whales in the
Atlantic. Minke whales tend to occur singly. An estimate of mean cue rate and its coefficient
of variation have been obtained from tagging studies on a number of minke whales in the
area.

The sample size is relatively small for a cue counting survey (which require larger sample
sizes for reliable estimation of the detection function than line transect surveys), but this is
the sample that was generated by the (expensive) survey, so you just need to do the best
you can with it.

The data are stored in the distance project CueCountingExample.zip. Open the project,
and click on the Data tab to see how the data are stored. The species code for minke
whales is “W” in this project; “bss” is Beaufort sea state code. A simple analysis has been
set up but not run in which data filters are used to subset the data so as to use only the data
we desire. Have a look at the model definition, in particular, the ‘Multipliers’ tab.

Question 1: what is ̂ (see presentation overheads for its meaning) and its coefficient of

variation for these data?

Question 2: what is  (see presentation overheads for its meaning) for this data?

Question 3: Find and fit a suitable detection function model to these data and from this
estimate minke whale abundance in the survey region, together with a 95% confidence
interval.

We do not describe how you ought to go about selecting a suitable model and assessing its
fit (you are becoming experienced using goodness-of-fit statistics and model selection
criteria). Note that there was some evidence on the survey of poor-quality distance
estimation, so it is worth conducting an analysis on grouped distance data.
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Introduction to Distance Sampling

Exercise 1: Line transect Solutions

Ducknest dataset

Perpendicular data (m)

F
re

q
u

e
n

c
y

0.0 0.5 1.0 1.5 2.0

0
2

0
4

0
6

0
8

0

74 73

79

66

78

58

52
54

72
70

66

62

58

1) Pa = area under curve / area of rectangle.

To estimate the area under the curve, I read off the heights of the mid points (in blue)
of my fitted curve (red) as follows: 75, 74, 72, 70, 66, 62, 58, 53. So my estimate of
area is (75+74+72+70+66+62+58+53)0.3 = 5300.3 = 159. There are lots of other
ways to work out the area under a curve – e.g., counting the number of grid squares
under the curve on your graph paper or using the trapezoidal rule.

Area of rectangle is height  width = 752.4 = 180.

So, my estimate of Pa is 159/180 = 0.883.

How many nests were in the surveyed area? I saw 534 nests, and I estimate the
proportion seen is 0.883, so that means I estimate there were 534/0.883=604.7 nests
in the surveyed area. This estimate is for a surveyed area of 2wL =
2(2.4/1000)2575 = 12.36km2. I therefore estimate nest density as 604.7/12.36 =
48.9 nests per km2.
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2) The red vertical dashed line shows my estimated effective strip half-width of
2.13m; I estimate that the area below my curve to the right of 2.13 is the same as the
area above the curve to the left of 2.13. In this case, the effective area surveyed is
estimated as 2μL = 2(2.13/1000)2575 = 10.97 km2, and estimated density is
534/10.97 = 48.7 nests / km2.

3) For my curve to represent the pdf f(x), I need to rescale such that the area under
the curve is 1.0. Since I estimated the area under my curve is 159, I can rescale by
dividing all the numbers on the y-axis by 159. The intercept, f(0) is therefore 75/159
= 0.472. Substituting this into the formula:

ˆ (0)ˆ
2

nf
D

L


gives a density estimate of 534(0.4721000)/22575 = 48.0 nests per km2 (Note, I
had to multiply f(0) by 1000 to convert from m-1 to km-1.)

Another way to estimate f(0) is f(0)=1/μ – in which case I’d get the same estimate as
in part (b).

Distance works by fitting a pdf f(x) to the observed data, and using the estimated f(0)
to estimate density. The output also gives μ and Pa, but these are worked out from
the estimate of f(0), so Distance would get the same answer whichever formula you
used.
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Introduction to Distance Sampling

Exercise 2: Line transect analysis of duck nests with Distance

1. You should get very similar estimates of density from different models, provided
those models fit the data well. Remember you have
 the χ2 goodness-of-fit statistic (why are there 3 of these?) 
 the Kolomogorov-Smirnov and Cramer von Mises tests
 q-q plot
 The negative exponential model does not fit

Model D̂ (nests/km2) 95% c.i. for D

Half-normal (no adjustments) 49.7 (44.2, 55.9)
Fourier series (uniform + cosine) 51.0 (44.9, 58.0)
Hazard-rate (no adjustments) 49.4 (42.3, 57.7)

Compare with 48.6 nests / km2 and 48.7 nests / km2 from exercise 1.
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Introduction to Distance Sampling

Exercise 3: Line transect analysis with Distance

1a) Results of estimating density from simulated data in which true density was 79.8
per km2. Findings from some candidate models:

Key function Adjustments w (m) D̂ D̂ CV D̂ LCL D̂ UCL
Half normal 0 35.8 87.49 0.16 63 122
Half normal 0 20 84.12 0.17 59 120

Uniform 1 20 86.43 0.17 61 123
Hazard rate 0 20 85.66 0.20 57 129

Neg. exponential 0 20 105.04 0.21 69 159

Not surprisingly for these data (simulated from a half normal detection function with a
broad shoulder), the negative exponential model gives a higher estimate than the
others, although the confidence interval still includes the true density. The other
models provide very similar estimates, though precision is slightly worse for the
hazard-rate model (because more parameters fitted). Agreement between the
estimate and the known true density is less good if you do not truncate the data, or
do not truncate them sufficiently. Take home message: With care, we can get
reliable estimates using the wrong model (the data were simulated using a half-
normal detection function).

Additional question

2) These capercaillie data are reasonably well-behaved and different models that fit
the data well should give similar results. Note the rounding in the distance data.
This means that interval cutpoints for histograms and goodness-of-fit testing, and for
the analysis of grouped data if this is required, should be chosen with care (i.e.,
distance bands ought to be sufficiently broad such that the ‘correct’ perpendicular
distance is in the bands containing the rounded recorded value. e.g. 0, 7.5, 17.5,
27.5, …

Fitted model D̂ D̂ LCL D̂ UCL D̂ CV
Half normal 4.76 4.01 5.65 0.09

Uniform cosine 4.28 3.22 5.68 0.14
Hazard rate 4.2 3.6 4.9 0.08

Half normal with grouped data 4.06 3.75 4.4 0.09
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Introduction to Distance Sampling

Exercise 4: Variance estimation for systematic designs using bootstrap--solutions

Recall the situation in which we have a strong gradient in animal density across our study region,
and at the same time we also have a difference in the lengths of our transects; such that short
transects are in areas of high animal density, and long transects are in areas of low animal density.

Basic variance estimation, with bootstrapping

8. The precision is very poor: estimated density ranges from about 1000 to 3600: a three-and-
a half-fold difference over which we are uncertain. Given that our survey covered 40% of
the triangle region, and had a good sample size (254 on 20 transects), this would be a very
disappointing result in practice.

9. Bootstrap output [your results may differ slightly as these are created from a random
process]:

Estimate %CV # df 95% Confidence Interval
--------------------------------------------------------

Half-normal/Cosine
D 2129.2 27.40 999 20.74 1216.2 3727.5

1164.0 3427.2
Half-normal/Cosine

N 1064.6 27.40 999 20.74 608.00 1864.0
582.00 1714.0

Note: Confidence interval 1 uses bootstrap SE and log-normal 95% intervals.
Interval 2 is the 2.5% and 97.5% quantiles of the bootstrap estimates.

9. The bootstrap results are very similar to the analytic results, as we would expect. In fact,
this did not used to be the case in previous versions of Distance, as the old analytic
variance estimator did not perform well when there were extreme trends in both density and
line length. You can access the previous default estimator under the Advanced... tab on the
Variance page of the Model Definition Properties (it’s estimator R3), and more details are
given in Fewster et al. (2009) on your thumb drive.

10. The component percentages of variance are as follows:

Component Percentages of Var(D)
-------------------------------
Detection probability : 4.3
Encounter rate : 95.7

It should ring an alarm bell to see such a high contribution from Encounter rate. Generally we might
expect encounter rate to be in the region of 70% to 80% for line transect surveys.

Post-stratification to improve variance estimation

4. The precision is now greatly improved:
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Estimate %CV df 95% Confidence Interval
-----------------------------------------------------

Half-normal/Cosine
D 2044.6 8.64 31.41 1715.0 2437.5
N 1022.0 8.64 31.41 858.00 1219.0

and a much smaller and more reasonable (considering the sample size and survey coverage)
proportion of the variation comes from estimating encounter rate:

Component Percentages of Var(D)
-------------------------------
Detection probability : 44.3
Encounter rate : 55.7

5. The CV is now even smaller, although it could have gone either way since this is an
estimator of the same quantity as the last question – just a more precise estimator.

Estimate %CV df 95% Confidence Interval
-----------------------------------------------------

Half-normal/Cosine
D 2044.6 7.97 75.87 1745.0 2395.6
N 1022.0 7.97 75.87 872.00 1198.0

The encounter rate degrees of freedom are now 19 (number of lines – 1) rather than 10
(number of post-strata) for the previous question – which is why this is a more precise
estimator of the variance.

It must be remembered that we have not made any change to our data by the post-stratification;
we are just getting a better estimate of the variance. In this case, the increase in precision
could make a fundamental difference to the utility of the survey: it might make the difference
between being able to make a management decision or not. Usually, trends will not be extreme as
they are in this example, and post-stratification will not make a great difference. Such an example
is shown below.

Systematic designs where post-stratification is not needed

The following simulated population does not exhibit strong trends across the survey region.
Otherwise, the strip dimensions and systematic design are the same as for the previous example.

Without post-stratification: analytic output

Estimate %CV df 95% Confidence Interval
------------------------------------------------------

Half-normal/Cosine
D 1954.0 8.22 50.60 1657.3 2303.9
N 977.00 8.22 50.60 829.00 1152.0

Note: Your bootstrap results will differ slightly, as bootstrapping is a random procedure.

158  CREEM, Univ of St Andrews August 2016 Introductory Distance Workshop



Estimate %CV # df 95% Confidence Interval
--------------------------------------------------------

Half-normal/Cosine
D 1947.4 10.03 999 50.60 1592.8 2380.8

1565.0 2350.3
Half-normal/Cosine

N 973.69 10.03 999 50.60 796.00 1190.0
782.00 1175.0

Note: Confidence interval 1 uses bootstrap SE and log-normal 95% intervals.
Interval 2 is the 2.5% and 97.5% quantiles of the bootstrap estimates.

With post-stratification (non-overlapping): analytic output

Estimate %CV df 95% Confidence Interval
------------------------------------------------------

Half-normal/Cosine
D 1954.0 8.38 25.80 1645.4 2320.6
N 977.00 8.38 25.80 823.00 1160.0
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Introduction to Distance Sampling

Exercise 5: Notes on point transect exercises

1. Results from selected model options; remember these are simulated data with a
half normal detection function and true density 79.6:

Key Adjustments # terms w (m) D̂ %cv 95% c.i. for D

Half-normal None 0 34.2 79.6 12.6 (62.1,102.1)
Half-normal None 0 20.0 70.8 15.7 (52.0, 96.5)
Uniform Cosine 1 20.0 75.0 14.4 (56.5, 99.6)
Hazard-rate None 0 20.0 62.4 18.7 (43.2, 90.0)
Neg. exp. Simple poly 1 20.0 73.1 29.2 (41.5,128.6)

We see a fair degree of variability between analyses – reliable analysis of point
transect data is more difficult than for line transect data. We see greater loss in
precision from truncating data relative to line transect sampling, but if we don’t
truncate data, different models can give widely differing estimates. For these data,
the hazard-rate model appears to have downward bias, and precision is very poor for
the negative exponential model.

2. I got the following estimated densities (territories ha-1). I have included estimates
for the three other species surveyed (not provided in the projects for the workshop).
Method 5 is territory mapping (which does not use distance sampling, and as you
note has no measure of precision associated because it is akin to a census method).

Species Common Great Tit European Winter
Chaffinch Robin Wren

Method
1 1.03 0.58 0.52 1.29

(0.74,1.43) (0.36,0.94) (0.26,1.06) (0.80,2.11)
2 0.90 0.22 0.60 1.02

(0.62,1.29) (0.13,0.39) (0.38,0.94) (0.80,1.32)
3 0.71 0.26 0.82 1.21

(0.45,1.23) (0.09,0.76) (0.52,1.31) (0.82,1.79)
4 0.64 0.26 0.69 1.07

(0.46,0.90) (0.16,0.42) (0.47,1.00) (0.87,1.31)
5 0.75 0.21 0.84 1.30

To obtain the above estimates, I used a truncation distance of 110m for methods 1
and 2, 92.5m for method 3, and 95m for method 4. For the wren data, I used the
uniform key with two cosine adjustments for method 1, the hazard-rate model for
methods 2 and 3, and the half-normal key with two Hermite polynomial adjustments
for method 4.

Points to note about the wren data: the wren more than any of the other species
showed evidence of observer avoidance. This didn’t cause too many difficulties,
except that the model favoured by AIC for line transect sampling was the hazard-rate
model, which had a very flat shoulder out to around 75m. It was implausible that
detection was certain out to this distance, so that I selected a model with a slightly
inferior AIC value, but with a more plausible fitted detection function. Analyses of the
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cue count data are necessarily rather subjective, as the data show substantial over-
dispersion (a single bird may give many songbursts all from the same location during
a five-minute count). In this circumstance, goodness-of-fit tests are very misleading,
and care must be taken not to overfit the data.

3. I obtained good fits to the 1980 savannah sparrow data by truncating at 55m. The
half-normal detection function without adjustments fitted well, as did the uniform with
cosine adjustments. The hazard-rate model performed less well. There was a
marginal preference for fitting the detection function separately in each stratum as
judged by AIC, but pooling distance data across strata might offer rather more robust
estimation. The estimates of density in the table correspond to a half-normal
detection function, fitted separately in each stratum, with a truncation distance of
55m.

For 1981, w=55m was again satisfactory. There was now a clear preference for
estimating the detection function separately by stratum, but little to choose between
the half-normal model and the uniform model with cosine adjustments. For
comparability with 1980, I chose the half-normal model, although AIC showed a very
marginal preference for uniform + cosine. (Again, the hazard-rate model provided
less good fits overall.)

Estimated densities D̂ (birds/ha) of savannah sparrows

Year Pasture D̂ 95% c.i. for D̂

1980 1 1.43 (0.94, 2.18)
2 4.12 (3.15, 5.38)
3 2.35 (1.72, 3.20)

All 2.63 (2.19, 3.16)

1981 0 1.39 (0.82, 2.36)
1 0.52 (0.27, 1.03)
2 1.70 (1.07, 2.71)
3 1.35 (0.81, 2.26)

All 1.24 (0.95, 1.62)
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Introduction to Distance Sampling

Exercise 6: Automated Survey Design Exercise Solutions

1. Point transect survey of North-eastern Mexico
The completed exercise is archived in the project MexicoUnPrjSolutions.zip

2. Entering geographic data into Distance, and generating Coverage
grids
The completed exercise is archived in the project TrapeziumSolutions.zip.

The first 3 designs show results for the equal angle, equal spaced and adjusted angle zigzag
designs based on 100 simulations. Even from this small number of runs, it is clear that for
the equal angle design coverage probability tends to increase as you move from the right of
the survey area, where the trapezium is tall, to the left where the trapezium is shorter. It is
easy to see why this is happening by looking at a survey generated using this design (survey
1). For the equal spaced and adjusted angle designs, there doesn't seem to be any pattern
in the variation in estimated coverage probability. This variability is largely due to Monte-
Carlo error, because we've only done 100 simulations, so before drawing conclusions about
these designs, we repeated the exercise with more 10 000 simulations.

These results are shown in designs 4-6. Design 4 is the equal angle zigzag and the pattern
of increasing coverage with decreasing trapezium height is now very clear. What about the
other two designs? The equal spaced design (Design 5) still looks pretty good, but if you
look carefully, there is a hint that coverage is slightly lower on the left side and higher on the
right. The coverage probability standard deviation is 0.011. Compare this with the standard
deviation for the adjusted angle design (Design 6) – 0.007. Also look at the coverage
probability map for the adjusted angle design – there is no evidence of any pattern in
coverage probability. We conclude that the equal spaced design has close to even coverage
probability, but that only the adjusted angle design has completely even coverage probability.

Note that this result only applies for the adjusted angle design if the study area width is
constant perpendicular to the design access. If you try repeating the exercise with a
triangular-shaped study area, you will find out that even the adjusted angle design will not
have even coverage probability.

3. Systematic parallel line aerial survey of marine mammals in St
Andrews bay
I got the following results (yours will be slightly different because the survey locations in each
simulation are selected at random). See also the project archived in StAndrewsSolutions.zip

Trackline
spacing

On effort trackline length Total trackline length

Min Max Mean Min Max Mean
4.5 206.6 228.8 219.6 249.3 275.3 264.7
5.0 184.4 205.6 198.2 220.5 248.8 242.5
5.5 169.7 189.5 178.9 217.1 245.3 224.7
6.0 152.8 176.1 162.1 183.7 220.7 206.1

Based on these, the 5.0km spacing seems to get us closest to our goal of 200km on effort for
250km total trackline length. The maximum total trackline length didn't exceed 250km which
is re-assuring if this is an absolute upper limit.

I went ahead and generated one realization of this 5km design, which we will use as the
survey plan. It gave me a total trackline of 226.2km, with 184.6km on effort (see
StAndrewsSolutions project file). While this is rather less than I wanted, I can't validly throw
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this one away and generate another as we could no longer validly claim to have a random
start point (I'd effectively only be choosing start points that lead to the amount of trackline
length I want) and so would no longer have even coverage probability.

As an aside, it is also interesting to look at the proportion of the total survey time spent on
effort – reported in Distance as the proportion on effort/total effort:

Trackline
spacing

Mean on effort / total effort

4.5 0.83
5.0 0.82
5.5 0.80
6.0 0.78

Not surprisingly, the greater the spacing between tracklines, the smaller the proportion of
time we spend on effort as we have to spend time flying between the transect lines.
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Introduction to Distance Sampling

Exercise 7a: Analysis of Stratified Data
Outline Solutions

Example analyses, which were used in getting these solutions, and which are referred to
below, are in the project file “Stratify solutions.dst”.

1. Relevant results are in Analysis “Full geog stratification”.
The AICs are 127.90 for the southern stratum and 187.90 for the northern stratum.
Detection function model fits are adequate visually and by goodness-of-fit test.
Sample sizes are relatively small but not alarmingly so. The southern stratum
appears to have a much narrower effective strip width.

2. Relevant results are in Analysis “Pooled f(0)”.
The AIC for the pooled detection function fit is 318.72. The detection function model
fit is adequate visually and by goodness-of-fit test. Since 318.72 >
(127.9+187.9=315.8) estimation of separate detection function in each stratum is
preferable.

3. Relevant results are in Analysis “No stratification”.
The whale density estimate from the unstratified analysis is around 25% larger than
the corresponding estimates from 1. and 2. above. The reason is that the survey
design was geographically stratified, with less survey effort in the north stratum, and
this is being ignored in the unstratified analysis.

What is not included in this project are cluster sizes of the observed minke whale
groups (we didn’t want to clutter the analysis with that detail). However, there is a bit
of a story in geographic variation in cluster sizes. Cluster densities are higher in the
southern stratum, but transects from both strata are being treated as if they are
representative of the whole survey region. This results in a positively biased cluster
density for the region as a whole. In addition, cluster sizes are higher in the South
stratum. The estimate of E(s) from the unstratified analysis is a positively biased
estimate of E(s) for the North stratum and a negatively biased estimate of E(s) for the
South stratum. When it is applied to both strata, it results in a positively biased
estimate of whale abundance because the North stratum is much larger and contains
roughly twice as many whales as the south stratum.

Moral: Don’t perform analyses without taking the survey design into account!
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Introduction to Distance Sampling

Exercise 7b: Analysis of Clustered Data
Outline Solutions

Example analyses, which were used in getting these solutions, and which are referred to
below, are in the project file “Cluster solutions.dst”.

1. Relevant results can be found in the analysis “E(s) by ln(s)_g(x)”.

(a) No, the mean observed cluster size is 2.25 (se=0.229) the regression estimate of
E(s) is 1.89 (se=0.139). The regression method not only corrects for size bias, but
has also given a smaller standard error.

(b) 7.2% of the variance of the density estimate comes from mean cluster size
estimation – so a small amount compared to the variance caused by encounter rate
and estimating the detection function.

2. Relevant results can be found in the analysis “truncation E(s)”.

The detection function shoulder extends out to about the end of the second distance
interval, so all data beyond this were discarded for estimation of cluster size (NB: this
truncation does not affect the estimation of the detection function or encounter rate).

(a) It is different because in this analysis all data beyond the second distance interval
have been discarded in an attempt to eliminate any size bias in the data. Compare
this result (1.85, se=0.183) with the mean of the observed clusters using the
untruncated data (2.25, se=0.229) - note how this result is much closer to the
estimate of E(s) using regression (1.89, se=0.139).

(b) It is largely because the observed mean cluster size is based on only 41
observations, while the regression estimate in analysis 1 above is based on 88
observations – you pay for discarding data with increased variance.

3. Relevant results can be found in the analyses “Post-stratified E(s) using mean”, “Post-
stratified E(s)_pooled f(0)_regr” and “Post-stratified E(s)_strat f(0)_regr”.

(a) Mean cluster size is not relevant for strata 1 & 2 as the clusters in each were all the
same size. The mean cluster size for the final stratum was 5.81 (se = 0.748).

(b) In the analysis “Post-stratified E(s)_pooled f(0)_regr”, cluster size strata are pooled
for estimation of the detection function and the regression method has been used
within cluster size strata. The regression estimate for the third stratum is 4.36 (se =
0.563) which is lower than the mean cluster size, suggesting that size bias is present
in this stratum. So, for these data, it would not have been correct to assume that the
effect of size bias had been eliminated by post-stratifying (and then using the mean
of the observed cluster sizes in each stratum).

(c) In the analysis “Post-stratified E(s)_strat f(0)_regr”, the detection function has been
estimated separately in each cluster size stratum. The detection functions are
different from each other - it looks like cluster sizes 3 and above are detected with
certainty almost all the way out to 1.2nm. It is questionable whether this is actually
possible. In addition, the sample size for the third stratum is very small (only 16
observations) – less than is usually recommended for modelling a detection function.
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Overall conclusion: considering all the analyses

 There are questions raised about all the analyses using post stratification. Post
stratification and using the mean cluster size per stratum did not eliminate size bias,
as we discovered when we checked by using post-stratification with regression.
Using a pooled detection function was not ideal, as we suspected that the detection
functions would be different for different strata. This was confirmed when detection
functions were estimated per stratum. However, the sample size in the third stratum
was too small to have enough evidence to believe that the fitted detection function
was plausible.

 That leaves the regression and the truncation method to choose between. There
were no problems with the regression method, and although the truncation method
gave a similar estimate of cluster size, data were thrown away, resulting in a larger
standard error.

Overall conclusion: the regression method is the preferred method.
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Introduction to Distance Sampling

Exercise 8: Covariates in the detection function

Outline Solutions

1 Simulated whale data

An example of the sort of analysis you might have performed is given in the archived project file
adv_practical_1_solutions.zip. If you sort by date created or analysis ID, you can see the order I
set up the analyses in. I first tried simple half-normal and hazard rate models without covariates,
and found that the half-normal model had a lower AIC. I then tried the MSTDO covariate and hour
covariates separately (as non-factor covariates). The analysis with MSTDO had a much lower
AIC, but the analysis with hour actually had a higher AIC than the analysis without covariates. I
tried an analysis with both MSTDO and hour, but this had a higher AIC than MSTDO alone (Table
1). I concluded that the MSTDO covariate was important, but the hour covariate was not.

Although these data did not appear to need any truncation, I briefly confirmed that the same results
were obtained with 10% truncation (analyses 7 and 8). Further analyses could look at the effect of
adding adjustment terms to the detection function, although since no adjustments were selected
with the half-normal without covariates it is likely that none will be required when the MSTDO
covariate is used.

Table 1. AIC values for the candidate models.

Model No truncation 10% truncation
HZ: simple model 125.32 82.46
HN: simple model 123.28 80.80
HN: with MSTDO 111.21 76.06
HN: with HOUR 125.03 82.15
HN: with HOUR + MSTDO 113.14 78.02

2 Analysis of golf tee data

With three covariates there are eight possible detection function models (including perpendicular
distance only). The AIC from the CDS model was 311.1 and the lowest AIC I found was 304.3
which included sex as the only additional covariate. You may have found a different model. Table
2 is a summary of the results from the CDS analysis and an MCDS analysis with my best model.
The component of variance due to the detection function fitted as a CDS was 64.3% and this
reduced to 54.2% when sex was included in the detection function.

As part of an exploratory data analysis it is useful to analyse the data as a CDS but post stratify
using the factor variables and fit separate components of the model for each factor level (as long
as there are enough observations). The esw’s for females (factor level = 0) and males (factor level
= 1) are 1.61 metres (%CV=13.0) and 2.65 metres (%CV=10.3), respectively. The esw’s for the
exposure levels 0 and 1 are 2.41 (13.2) and 2.31 (10.0). The differences between males and
females appear to be much larger than the difference between exposure levels indicating that sex
would be the more useful covariate to include in the model. Notice how the abundance estimate for
the CDS post-stratified by sex and the MCDS including sex are very similar, but the CV is smaller
for the latter.
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Table 2. Parameter estimates from CDS models and MCDS model which included sex only. CV’s
are given in parentheses

Parameter True
value

CDS CDS post stratified by sex MCDS

Female (0) Male (1)
AIC 311.14 69.7 234.7 304.3
esw (m) 2.34 (7.9) 1.61 (13.0) 2.65 (10.3) 2.24 (6.4)
Ds (clusters per m2) 0.15 0.13 (7.9) 0.05 (21.3) 0.08 (10.3) 0.13 (11.0)
E[S] 3.04 3.01 (5.9) 2.80 (13.7) 3.13 (6.5) 3.01 (5.9)
D (tees per m2) 0.45 0.38 (9.9) 0.14 (18.9) 0.25 (12.2) 0.40 (8.8)

N 760 638 (9.9)
243 (18.9) 421 (12.2)

666 (8.8)664 (22.5)

3 Analysis of dolphin sightings data

To obtain an overall impression of the data it is useful to fit a detection function histogram with
many intervals (you may have problems fitting to the maximum number of 30, but 25 intervals
should be OK). The spikes in the histogram suggest that the data has been rounded to zero and
possibly other values. The q-q plot also indicates problems with the model at zero distances. To
mitigate these problems, use the diagnostic tab to pool the data into a few intervals – 10 to 15
intervals work OK.

For the MCDS analysis, cluster size was fitted as a continuous variable, whereas, month, Beaufort,
cue and search position were fitted as factor variables. Table 3 summarises the results. The
number of adjustment terms allowed was limited to a maximum of two. In most cases a half normal
function was chosen with either no, or one, adjustment term.

Table 3. Parameter estimates for the different models. Percentage CVs are given in parentheses.
Note that CVs for the model containing cluster size are obtained by bootstrapping.

Parameter CDS Cluster size Month Beaufort Cue Search
AIC 3365.9 3359.5 3362.6 3366.9 3368.3 3339.8
esw (nm) 3.00 (4.5) 3.08 (1.9) 3.00 (1.9) 3.00 (1.9) 3.00 (1.9) 2.93 (2.3)
Ds (clusters per nm2) 181 (4.5) 177 181 (1.9) 181 (1.9) 181 (1.9) 185 (2.3)
E[S] 507 (5.3) 460 529 (5.3) 507 (5.3) 495 (5.3) 589 (5.3)
D (animals per nm2) 91965 (7.0) 81454 96009 (5.7) 91921

(5.6)
89729

(5.6)
109420

(5.8)

Based on the AIC, it seems as though the model including search method is best, however, there
were warning messages about the detection function fitting and cluster size estimation. Before
going on and looking at models which include two covariates, it is worth looking at the search
model in more detail. The detection functions have very different scale parameters, for example,
the detection function for search method 3 (using a helicopter) has a very wide shoulder and so the
scale parameter is very large. This suggests that the observers were seeing everything out to 5 nm
and so detection does not decrease with distance as it does with the other methods. One
assumption of MCDS is that the perpendicular distance distributions of the covariate factor levels
have the same shape. It may be worth refitting the model ignoring the observations made by the
helicopter. Data can easily be selected/ignored using the Data filter | Data selection tab. The
selection criteria will be of the form ‘[Search method] IN (0,2,5)’

This is a large dataset and so it is worth deciding on your final model before doing any
bootstrapping to obtain variances.

4 Hawaiian Passerines
We provide no sample solution to these data, consult the Marques et al. (2007) reprint on your
data stick.
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Introduction to Distance Sampling

Exercise 9a: Analysis with the use of multipliers
Solution outline

We did not perform a comprehensive examination of fitting a detection function to the
pellet groups detected. However, as a general practice, we have truncated the most
distant 10% pellet groups. Have a look at “Deer pellets solution.zip”

For management purposes, we would like to produce an estimate of the number of deer
inhabiting each woodlot. In scrutinizing the data set, we see there is considerable
variability in the number of pellet groups detected within each woodlot, and in some
woodlots we detected as few as 4 pellet groups. Hence we cannot reliably estimate
woodlot-specific detection functions. Consequently, we will pool data across woodlots
to derive a global detection function. To produce woodlot-specific density estimates, we
combine woodlot-specific encounter rates with the global detection function.

The global detection function

Encounter rate per kilometer by woodlot

Encounter rate CV(n/L)
Block A 715.88 17.25
Block B 360.00 22.99
Block C 37.778 21.51
Block E 35.294 49.26
Block F 145.00 0.00
Block G 80.000 67.70
Block H 15.000 0.00
Block J 70.000 0.00

Note that blocks F, H, and J have but a single transect placed in them. As a
consequence, it is not possible to empirically compute a variance for encounter rate in
those woodlots.
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Results

Produce an overall estimate of density as mean of woodland-specific densities weighted
by the effort allocated within each woodlot.--

With considerable effort allocated in woodlot A, where deer density is
high, the overall estimate of density is between the estimated density in
woodlot A of 74 deer per km

-2
and the lower densities in the remaining

woodlots.

Make special note of the components of variance (contribution of detection function,
encounter rate, decay rate, and what happened to defecation rate component?) in each
of the strata.

Because we now have uncertainty associated not only with the
detection function and encounter rate, but also decay rate we are
presented with these component of variability for each of the strata for
which we requested estimates of density.

In woodlot A, there were 13 transects on which over 1200 pellet groups were detected;
uncertainty in the estimated density was 19.0% and the variance components were
apportioned as

Component Percentages of Var(D)
-------------------------------
Detection probability : 4.2
Encounter rate : 78.1
Decay rate : 17.7

whereas woodlot E had 5 transects, but only 30 detections overall (resulting in a CV of
48%)

Component Percentages of Var(D)
-------------------------------
Detection probability : 0.7
Encounter rate : 96.6
Decay rate : 2.8

In woodlot F, were only a single transect was placed, the CV of density was 8.9% with
the allocation being

Component Percentages of Var(D)
-------------------------------
Detection probability : 19.1
Decay rate : 80.9

Do you trust this assessment of uncertainty in the density of deer in this woodlot? We
are missing a component of variation because we were negligent in placing only a
single transect in this woodlot, and so are left to assume there is no variability in
encounter rate in this woodlot.

By the same token, we are left to assume there is no variability in defecation rates
between deer because we have no measure of uncertainty in this facet of our
assessment of deer densities.

170  CREEM, Univ of St Andrews August 2016 Introductory Distance Workshop



Introduction to Distance Sampling

Exercise 9b: Cue Counting Analysis
Example Solution

Question 1: 25ˆ  cues per time unit (per hour in this case). Its standard error is 5, therefore its CV

is 5/25=0.2 (or 20%).

Question 2: Half the circle was searched so the sampling fraction,  /2π = 0.5. Therefore,    (
must be in radians).

Question 3: An example analysis is in the project D6CueCountingSolution.zip. A half-normal
detection function model with no adjustment parameters was chosen. Minke whale abundance was
estimated to be 13,427 whales with 95% confidence interval (5,612; 32,124).

Note the large difference between this and the estimate from the hazard-rate model, which is 10,711
whales, with 95% confidence interval (4,234; 27,097). Although the models produce a warning, this is
not in itself a cause for concern, since all it says is that it could not consider many adjustment
parameters because the data are in so few intervals – in any event models with no adjustment
parameters were chosen (see 2nd page of the analysis output).

Remember that the key parameter in a cue counting analysis is h(0), the slope of the fitted pdf to the
observed data at distance zero. The difference between the two estimates is the difference between
these slopes for the two models:
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Cue-counting estimates of detection probability are more volatile than those from line transect
surveys, because on a cue-counting survey you have least data where you need it most to estimate
h(0) – namely at distances close to zero. As a consequence, cue-counting surveys require higher cue
sample size for reliable estimation than samples of animals for line transect surveys.

Don’t worry too much about the apparent lack of fit in the first interval or two in the plots below –
remember the sample size is very small in these intervals. Use the plot above and the goodness-of-fit
statistics to guide you about the fit of your model.
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