
Advanced Techniques and Recent Developments in Distance Sampling

Practical 2: Double-Platform Trial-Observer Configuration Analysis Solutions

I. Golf Tee Survey

Results are in the project GolfteesSolutions. This example dataset is also discussed in Chapter 6
of Advanced Distance Sampling and results for the trial setup are given in Table 6.5.

1. and 2. Point and confidence interval estimation; FI - MR dist and FI - MR dist+size+sex+exp

The model with more covariates is modelling more of the heterogeneity in detection probability,
and so should be less biased. This seems to be the case: “FI – MR dist” has an estimated N
(number of individuals) of 593, and “FI – MR dist + size + sex + exp” has an estimate of 642 (recall
that there were really 760 individual tees).

There is some evidence of unmodelled heterogeneity in both cases (noticeably more so with the
“FI – MR dist” in that the fitted line in the plot for observer 1 (headed “Detection probability 1”)
declines slower that the histogram as distance increases. This is less the case for the “FI – MR
dist + size + sex + exp” model – not surprisingly, since it models the effect of more variables
causing heterogeneity.

Both are still somewhat negatively biased though, but the 95% confidence intervals do include the
true value. Both are reasonable fits to the data (non-significant chi-squares, Cramer-von Mises
and KS tests) – although the fit is noticeably worse in the case of the “FI – MR dist” model. The
“dist + size + sex + exp” model has a much lower AIC (407 vs 452) so is to be preferred on that
basis.

3. Specifying new models

I tried two models with interaction terms (although many other models could have been tried) –
one with a sex times exposure interaction (FI – MR dist + sex x exp) and one with a three-way
interaction between distance, sex and exposure (FI – MR dist x sex x exp). The former had a
slightly lower AIC (403.8), and this was lower than the model without interactions. The estimated
N from this model (682) was also closer to truth (760). Both have 95% confidence limits that
include the true value.

4. Point independence

The point independence model with just Distance in the MR model (“PI – MR dist DS hn”) had a
slightly lower AIC than the corresponding full independence model (“FI – MR dist”): 452.03 vs
452.81. However the estimate is much closer to truth: estimated N is 688 vs 593. We can expect
the bias to be smaller for the point independence model because the assumption of independence
only on the trackline is weaker than independence everywhere.

Comparing the previous best FI model (“FI – MR dist + sex x exp”) with the equivalent PI model
with no covariates in the DS part (“PI – MR dist + sex x exp DS hn”), the former had a lower AIC,
and similarly for a model with no interactions in the MR model (model “PI – MR dist + sex + exp
DS hn”). The difference in bias between FI and PI models is less for these models with more
covariates, as there is less unmodelled heterogeneity that can contribute to non-independence
away from the trackline (i.e., violation of the independence assumption of the FI model).

Adding sex as a covariate into the DS model (PI – MR dist + sex + exp DS hn sex”) produced a
model with the lowest AIC yet (399.26), and also the closest estimate (695) to true N. This model
was found to have lowest AIC in a comparison of 40 models in Chapter 6 of the Advanced



Distance Sampling book (Table 6.5). The estimate is still less than the true N indicating, perhaps,
some unmodelled heterogeneity on the trackline (or perhaps just bad luck – remember that this is
only one survey).

Was this complex modelling worthwhile? In this case, the estimated p(0) for the best model was
0.965. If we ran a conventional distance sampling analysis, pooling the data from the two
observers, we should get a very robust estimate of N. We did this in the final analysis in the
solutions project. (To do this, we defined a new data filter that selected only records where
Observer = 1 regardless of whether they were seen by that observer or not – i.e. we use data from
both observers combined, who will have a higher p(0) than either of them on their own.) The
estimate of N from the CDS analysis is 706 – slightly closer to truth than our best MRDS model
(695).

II. Crabeater Seal Survey (as you know, these results took a long time)

(a) The MCDS goodness-of-fit statistics all indicate adequate fit (none are significant at the 5% level)
and the abundance estimate is not far from that for the PI model used in the paper: 3,820 with CI
(3,168; 4,606) vs 3,969 with CI (3,274; 4,812) from the MRDS model. Use of an MCDS model
results in an estimate only 4% lower than that from the MRDS model and the CVs for the two
models are very similar - so the MCDS model seems pretty adequate.

Why is this? It is because the MCDS estimate of p(0) for both platforms combined is 0.988 – i.e.
the conventional distance sampling assumption that p(0) is 1 is very nearly satisfied.

(b) The full-independence (FI) MRDS analysis is not adequate. The very poor fit to the combined
distance data is clear from the plots headed "Detection Probability 1", "Detection Probability 2"
and "Detection Probability 3", which show the distribution of Obs1, Obs2 and combined Obs
detections, with the Obs 1, Obs 2 and combined detection functions overlaid. It can also be clearly
seen from the Q-Q plot and the Kolmogorov-Smirnov goodness-of-fit test statistic.

The plot headed "Detection Probability 4" shows the duplicates and the duplicated detection
function. The plots headed "Detection Probability 5" and "Detection Probability 6" are the
conditional detection functions for each observer overlaid on the respective duplicate proportions.

Notice that the conditional detection function fits are pretty good. So the model seems adequate
for modelling the conditional probability of one observer detecting a group, given the other
observer detected it, but not for the unconditional probability of detecting a group (which is what
we want to estimate). This implies that there is something about detected groups that tends to
make them more detectable than other groups (i.e., some unmodelled heterogeneity). So treating
the conditional detection functions as if they applied to undetected groups will lead to positive bias
in estimating their detection probability and negative bias in estimating abundance.

The severe negative bias in the abundance estimate is apparent from a comparison of the FI and
PI estimates: the former is 2,509 with CI (2,070; 3,041), which is substantially lower than even the
MCDS estimate, while the latter is 3,969 with CI (3,274; 4,812).

Note that PI estimators cannot be lower than the corresponding CDS or MCDS estimators.

One final note: FI abundance estimates will not in general be lower than MCDS estimates, even
when the FI assumption fails, as it has here. In particular, when p(0) is low, the FI estimator is
likely to be less biased than the MCDS estimator. In this example, p(0) is very close to 1, so the
MCDS estimator has small bias.


