Assessment of model performance

- Likelihood
- AIC
- Absolute measures of model fit

Chi-squared test
Q-Q plots
Kolmogorov-Smirnov and Cramér-von Mises tests

Likelihood

$f(x)=$ probability density function of x
$f(x) d x=\operatorname{Pr}$ (animal was between x and $x+d x$ from the line, given it was detected between 0 and w) for small $d x$

When distances are exact, the likelihood is given by

$$
L=\prod_{i=1}^{n} f\left(x_{i}\right)=f\left(x_{1}\right) \times f\left(x_{2}\right) \times \ldots \times f\left(x_{n}\right)
$$

$x_{i}=$ distance of $i^{\text {th }}$ detected animal from the line.
We fit $f(x)$ by finding the values for the parameters of $f(x)$ (or equivalently $g(x)$) that maximize $L\left(\right.$ or $\left.\log _{\mathrm{e}}(L)\right)$.

Akaike's Information Criterion

$$
\text { AIC }=-2 \log _{e}(L)+2 q
$$

L is the maximized likelihood (evaluated at the maximum likelihood estimates of the model parameters)
and q is the number of parameters in the model.

- Models need not be special cases of one another
- Select the model with smallest AIC
- Gives a relative measure of fit

Limitations of AIC

Cannot be used to select between models when:

- sample size n differs
- truncation distance w differs
- data are grouped, and cut points differ
- data are grouped in one analysis and ungrouped in the other

Goodness-of-Fit

- Chi-squared test for grouped (interval) data; if data are exact, we must specify interval cut points for this test
- Q-Q plots and related tests for exact data

Chi-squared tests

Define u distance intervals, with n_{i} detections in interval $i, i=1, \ldots, u$.
Then

$$
\chi^{2}=\sum_{i=1}^{u} \frac{\left(n_{i}-n \hat{\pi}_{i}\right)^{2}}{n \hat{\pi}_{i}}
$$

where $n=\sum_{i} n_{i}$
and $\hat{\pi}_{j}$ is the proportion of the area under the estimated $\operatorname{pdf}, \hat{f}(x)$, that lies in interval i.

If the model is 'correct': $\quad \chi^{2} \sim \chi_{u-q-1}^{2}$ $q=$ no. of parameters

CREEM

Chaffinch line transect data

University of St Andrews

χ^{2} goodness-of-fit test

Goodness of fit results for ddf object
Chi-square tests
[0,12.5] (12.5,22.5] (22.5,32.5] (32.5,42.5]
Observed 16.0000000011 .0000000011 .0000008 .0000000
Expected 15.3183203011 .6265328210 .623975 9.3264854
Chisquare 0.03033539 0.03376272 0.013309 0.1886631
(42.5,52.5] (52.5,62.5] (62.5,77.5] (77.5,95] Total

Observed $9.00000007 .00000000 \quad 3.0000008 .00000073 .000000$
Expected $7.8658030 \quad 6.37326777 \quad 6.960224 \quad 4.90539173 .000000$
Chisquare 0.1635437 0.06163138 2.253286 1.952261 4.696791
$P=0.58325$ with 6 degrees of freedom

Q-Q Plots and Related Tests

University of
St Andrews

Example: Rounding to zero

University of St Andrews

University of
St Andrews

Kolmogorov-Smirnov test

Cramér-von Mises test

University of St Andrews

Chaffinch line transect Q-Q plot

University of St Andrews

K-S test and Cramer-von Mises test

Distance sampling Kolmogorov-Smirnov test
Test statistic $=0.0572767 \mathrm{p}$-value $=1$
(p-value calculated from 100/100 bootstraps)

Distance sampling Cramer-von Mises test (unweighted)
Test statistic $=0.0367951 \mathrm{p}$-value $=0.948916$

Q-Q Plot Summary

- Q-Q plots show goodness-of-fit at "high resolution" - without requiring grouping into intervals
- Kolmogorov-Smirnov test and Cramér-von Mises test are goodness-of-fit tests that do not require grouping

Making Distance Sampling Work

- Assumptions and effect of violation
- Reliable distance sampling
- Pooling robustness
- Examples of imperfect data

Recap of distance sampling

There are two stages to estimating abundance
Stage 1: given n, how many objects are in the surveyed/covered region (of size a), N_{a}
Need to estimate $P_{a}($ or $f(0)$ or ESW, etc.)

$$
\hat{N}_{a}=n / \hat{P}_{a}
$$

Stage 2: given $\hat{N}_{c,}$ how many objects are in study region (of size A), N
'Scale up' from what we see in the survey region to the whole study region

$$
\hat{N}=\frac{\hat{N}_{a}}{a / A}
$$

Assumptions for estimating N_{a} (stage 1)

1. Animals distributed independently of line or point

This ensures the true distribution of animals with respect to the line or point is known Violated by non-random line/point placement Substantial violation can produce substantial bias (e.g. roadside counts)
e.g. for line transects

True distribution of
animals

CREEM
Centre for Research into Ecological
and Environmental Modelling

Detection function,
$g(x)$

Observed distribution, $f(x)$

University of St Andrews

Assumptions for estimating N_{a} (stage 1)

2. All animals on the line or point are detected i.e. $g(0)=1$

It is a critical assumption - violation causes negative bias
e.g. if $g(0)=0.8$, estimates of N are 80% of true N on average

Assumptions for estimating N_{a} (stage 1)

3. Observation process is a 'snapshot'

Other ways to phrase this:

Observers are moving much faster than the animals
Animals do not move before they can be detected
Problems of independent/non-responsive movement

An animal moving independently of the observer (compared to moving in response to the observer) produces positive bias; size of bias depends on relative rate of movement of observer and animal, and type of survey.

Point transect methods in particular need to use 'snapshot' method.

Assumptions for estimating N_{a} (stage 1)

3. Observation process is a 'snapshot' (continued...)

Problems of responsive movement
Responsive movement can cause large bias
It can occur within a single line/point or between lines/points
If animals are 'driven' from one line/point to the next ahead of the observer, positive bias will result.

Note: movement independent of observer outwith 'snapshot' is fine - in this case, the same animal can be detected on multiple lines/transects

Assumptions for estimating N_{a} (stage 1)

4. Distances are measured accurately

Random errors cause bias.
Bias is generally small for line transect estimators,
Can be large for point transect estimators.
Both are sensitive to systematic bias and to rounding to 0 distance (or angle).
Can use grouped data collection.
5. Detections are independent

Violation has little effect. (Model selection methods for $g(x)$, such as AIC, are somewhat affected)

Assumptions for estimating N given N_{a} (stage 2)

1. Lines or points are located according to a survey design with appropriate randomization

We use properties of the survey design to extrapolate from the surveyed/covered region to the study region ('design-based')
Non-random survey design means density in surveyed/covered region may not be representative of density in study region. Also variance may be biased.

Reliable distance sampling (1)

1. Reliable estimation of $P_{a}($ or $f(0)$ or ESW, etc.)

In addition to the assumptions, we would like:

(1) Reliable estimation of P_{a}

Good field methods will avoid a 'spike’ like this

Avoid a) rounding distances (and angles) to zero,
b) 'guarding the trackline'

University of St Andrews

(1) Reliable estimation of P_{a} (cont.)

Sample size of observations ($\sim 60-80$)

- less for detection functions with 'easy' shapes
- more for point transects and 'difficult shapes'.

University of St Andrews

Reliable distance sampling (2)

2. Reliable estimation of N from N_{a}

In addition to the assumption of randomized design, we would like a 'large' sample of lines or points (20 or more), evenly distributed through the study region

Pooling robustness

Individuals can have quite different detection functions, but this produces little bias (up to a point!)

'Pooling robustness' = robust to pooling of multiple detection functions

e.g. Simulation study (unpublished!) Truth = 1000 animals

Scenario 1: animals have a gamma distribution of detection functions between min and max shown.

Mean estimate from simulation: 984 animals (SE 2.3). Bias -1.6\%

Non-ideal data

CREEM

Centre for Research into Ecological
and Environmental Modelling

University of St Andrews

