
Introduction to distance sampling
Workshop, 21-23 August 2019

Centre for Research into Ecological and Environmental Modelling

Exercise 2. Line transect estimation using R

In this exercise, we use R (R Core Team 2018) and the Distance package (Miller 2017,
Miller et al. 2019) to fit different detection function models to the duck nest data
(introduced in Exercise 1) and estimate duck nest density and abundance.

1 Objectives
The aims of this exercise are to:

1. Load the Distance library
2. Import a data file
3. Fit a basic detection function using the ds function
4. Plot and examine a detection function
5. Assess goodness of fit of the detection function
6. Fit different detection function forms.

2 Survey data
As a reminder of the survey, 20 line transects, each of length 128.75 km, were searched
out to a distance of 2.4 metres (Anderson and Pospahala 1970). Perpendicular distances
to detected nests have been provided in a ‘csv’ text file in a basic format required by
‘Distance’ (more on this later). The columns in the file ‘IntroDS_2.1.csv’ are:

• Study.Area - this is the name of the study, Monte Vista NWR
• Region.Label - identifier of regions: in this case there is only one region and it is set

to ‘Default’
• Area - size of the study region (km2): here the area is set to zero 1

• Sample.Label - line transect identifier (numbered 1-20)
• Effort - length of the line transects (km)
• object - unique identifier for each duck nest identified
• distance - perpendicular distance (metres) to each duck nest.

The distances allow different key functions/adjustments to be fitted in the detection
function model and, by including the transect lengths and area of the region, density and
abundance can be estimated.

1The area of the refuge is 47.7 km2 - this is needed to obtain abundance: for the purposes of this
exercise, we are interested in fitting detection functions and density rather than abundance.

1

3 Getting started in R
Open RStudio (or R if you prefer working in the command window only). To let R know
where to save the R work space and ‘.Rmd’ files) set your ‘working directory’ - from the
menu along the top of the RStudio window click on ‘Session > Set Working Directory >
Choose Directory’ and select your chosen directory, for example ‘C:/workshop’.

4 Importing the data
Read the data from a file into R with the following command - this command assumes
that the dsdata package has been installed on your computer. A comma-delimited file
‘IntroDS_2.1.csv’ is in a directory that was created when that R package was installed.
Import duck nest data
nestfile <- system.file("extdata", "IntroDS_2.1.csv", package = "dsdata")
nests <- read.csv(file=nestfile, header=TRUE)

To look at the first few rows of nests type the following command.
head(nests)

The object nests is a dataframe object made up of rows and columns. There is one row
for each detected nest: use the function nrow to remind yourself how many detections
there are:
nrow(nests)

5 Summarising the perpendicular distances
Create a numerical summary of the distances:
summary(nests$distance)

Similarly to plot a histogram of distances, the command is:
hist(nests$distance, xlab="Distance (m)")

We are now going to use the Distance package (Miller 2017) to fit a detection function
to these data.

6 Using the Distance package
First, ensure that the Distance package (Miller 2017) has been installed if you haven’t
already installed it: to do this go to the Packages tab and click on Install and in the
‘Packages’ box type ‘Distance’.

Once installed, the package can be loaded:
Load package
library(Distance)

2

7 Fitting a simple detection function model with ds

Detection functions are fitted using the ds function and this function requires a data
frame to have a column called distance. We have this in our nests data, therefore, we
can simply supply the name of the data frame to the function as follows.

A guaranteed way to produce incorrect results from your analysis is to mis-
specify the units distances are measured. The ds function has an argument
convert.units where the user provides a value to report density in proper
units. Providing an incorrect value will result in estimates that are out by
orders of magnitude.

Before fitting a model, the units of measure within the survey need to be reconciled.
We can choose the units in which duck nest density is to be reported, we choose square
kilometres. How to import this information to the ds function?

The answer is another function convert_units. Arguments to this function are - dis-
tance_units
- units of measure for perpendicular/radial distances - effort_units
- units of measure for effort (NULL for point transects) - area_units
- units of measure for the study area.
conversion.factor <- convert_units("meter", "kilometer", "square kilometer")

Fit half-normal detection function, no adjustment terms
nest.hn <- ds(data=nests, key="hn", adjustment=NULL,

convert.units=conversion.factor)

Details about the arguments for this function:

• key="hn"
– fit a half-normal key detection function

• adjustment=NULL
– do not include adjustment terms

• convert.units=0.001
– required because, for this example, the perpendicular distances are in metres and

the line transect lengths are in km - this argument converts the perpendicular
distance measurements from metres to km.

As we have seen, on executing the ds command some information is provided to the
screen reminding the user what model has been fitted and the associated AIC value. More
information is supplied if we ask for a summary of the model as follows:
Summarise model object
summary(nest.hn)

Can you match the information with the values you used in Exercise 1 - was your density
estimate similar to the one obtained here?

To look at the fitted detection function, simply use the plot function:
plot(nest.hn)

The number of bins in the histogram can be changed by specifying the nc argument, for

3

example, to plot the histogram having 8 bins (as in Exercise 1) we can specify:
plot(nest.hn, nc=8)

The histogram should look like the one you drew in Exercise 1.

8 Goodness of fit
The usual tools for checking goodness of fit are available: the function gof_ds performs
goodness of fits tests and plots a QQ-plot. In this command, 8 bins will be used for the
chi-square goodness of fit test.
gof_ds(nest.hn, nc=8)

9 Specifying different detection functions
Different detection function forms and shapes, are specified by changing the key and
adjustment arguments.

The different options available for key detection functions are:

• half normal (key="hn") - this is the default
• hazard rate (key="hr")
• uniform (key="unif")

The different options available for adjustment terms are:

• no adjustment terms (adjustment=NULL)
• cosine (adjustment="cos") - default
• Hermite polynomial (adjustment="herm")
• Simple polynomial (adjustment="poly")

For each model specified below, note down the AIC, density and 95% confidence interval
and compare it to the model already fitted (i.e. half-normal with no adjustments). Which
detection function model would you choose?

To fit a uniform key function with cosine adjustment terms, use the command:
nest.uf.cos <- ds(nests, key="unif", adjustment="cos",

convert.units=conversion.factor)

By default, AIC selection will be used to fit adjustment terms of up to order 5. Have any
adjustment terms been selected?

To fit a hazard rate key function with Hermite polynomial adjustment terms, then use
the command:
nest.hr.herm <- ds(nests, key="hr", adjustment="herm",

convert.units=conversion.factor)

4

10 References
Anderson DR and Pospahala RS (1970) Correction of bias in belt transect studies of
immotile objects. The Journal of Wildlife Management 34:141-146. http://www.jstor.org/
stable/3799501.

Miller DL (2017) Distance: Distance Sampling Detection Function and Abundance
Estimation. R package version 0.9.7. https://CRAN.R-project.org/package=Distance

Miller DL, Rexstad E, Thomas L, Marshall L, Laake JL (2019) Distance Sampling in R.
Journal of Statistical Software 89(1), 1-28. doi:10.18637/jss.v089.i01 http://doi.org/10.
18637/jss.v089.i01.

R Core Team (2018) R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

5

http://www.jstor.org/stable/3799501
http://www.jstor.org/stable/3799501
https://CRAN.R-project.org/package=Distance
doi:10.18637/jss.v089.i01
http://doi.org/10.18637/jss.v089.i01
http://doi.org/10.18637/jss.v089.i01
https://www.R-project.org/

Solution 2. Line transect estimation using R

Import and check the data.
Import duck nest data
nestfile <- system.file("extdata", "IntroDS_2.1.csv", package = "dsdata")
nests <- read.csv(file=nestfile, header=TRUE)
Check data OK
head(nests, n=3)

Study.Area Region.Label Area Sample.Label Effort object distance
1 Monte Vista NWR Default 0 1 128.75 1 0.06
2 Monte Vista NWR Default 0 1 128.75 2 0.07
3 Monte Vista NWR Default 0 1 128.75 3 0.04

How many observations (note: detections on all lines)
nrow(nests)

[1] 534

Summary of perp distances
summary(nests$distance)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.010 0.540 1.080 1.117 1.670 2.400

Histogram
Create 8 bins
brks <- seq(from=0, to=2.4, by=0.3)
hist(nests$distance, breaks=brks, xlab="Distance (m)",

main="Perpendicular distances duck nests")

6

Perpendicular distances duck nests

Distance (m)

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80

Fit the three models using proper units of distance measure..

The answer is another function convert_units. Arguments to this function are - dis-
tance_units
- units of measure for perpendicular/radial distances - effort_units
- units of measure for effort (NULL for point transects) - area_units
- units of measure for the study area.
Load library
library(Distance)
conversion.factor <- convert_units("Meter", "Kilometer", "Square Kilometer")
Model 1. Half-normal with no adjustments
nest.hn <- ds(nests, key="hn", adjustment=NULL,

convert.units=conversion.factor)
Summary
summary(nest.hn)

##
Summary for distance analysis
Number of observations : 534
Distance range : 0 - 2.4
##
Model : Half-normal key function
AIC : 928.1338
##
Detection function parameters
Scale coefficient(s):
estimate se
(Intercept) 0.9328967 0.1703933

7

##
Estimate SE CV
Average p 0.8693482 0.03902053 0.04488481
N in covered region 614.2533225 29.19683067 0.04753223
##
Summary statistics:
Region Area CoveredArea Effort n k ER se.ER cv.ER
1 Default 12.36 12.36 2575 534 20 0.2073786 0.007970756 0.03843576
##
Density:
Label Estimate se cv lcl ucl df
1 Total 49.69687 2.936725 0.05909276 44.2033 55.87318 99.55689

Fit alternative models
Model 2. Uniform with cosine adjustments
nest.uf.cos <- ds(nests, key="unif", adjustment="cos",

convert.units=conversion.factor)
Model 3. Hazard rate with hermite polynomial adjustments
nest.hr.herm <- ds(nests, key="hr", adjustment="herm",

convert.units=conversion.factor)

The goodness of fit for the basic model is shown below.
gof_ds(nest.hn, nc=8)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical cdf

F
itt

ed
 c

df

##
Goodness of fit results for ddf object
##
Distance sampling Cramer-von Mises test (unweighted)

8

Test statistic = 0.0353634 p-value = 0.955416

A function useful for contrasting models is summarize_ds_models. A summary table of
goodness of fit statistics for all models is created below. Note the code pander::pander:
this is used because the output from summarize_ds_models is formatted for latex style
editors and the pander function prints the output in a pretty way in a document.
Summarise gof statistics
pander::pander(summarize_ds_models(nest.hn, nest.uf.cos, nest.hr.herm),

caption="Model results for ducknest data set.")

Table 1: Model results for ducknest data set. (continued
below)

Model Key function Formula
nest.hn Half-normal ~1

nest.uf.cos Uniform with cosine adjustment term
of order 1

NA

nest.hr.herm Hazard-rate ~1

C-vM p-value P̂a se(P̂a) ∆AIC
0.9554 0.8693 0.03902 0
0.8208 0.8464 0.04407 0.3459
0.9806 0.8891 0.04958 1.66

The density results from all models are summarized below.

Model DetectionFunction AIC Density LowerCI UpperCI
1 Half-normal, no adjustments 928.1 49.7 44.2 55.87
2 Uniform, cosine adjustments 928.5 51.04 44.92 58
3 Hazard rate, hermite

adjustments
929.8 48.59 42.52 55.54

The detection function plots are shown below.
Divide the plot window
par(mfrow=c(2,2))
Plot detection functions
plot(nest.hn, nc=8, main="Half normal, no adj.")
plot(nest.uf.cos, nc=8, main="Uniform, cosine adj.")
plot(nest.hr.herm, nc=8, main="Hazard rate, hermite adj.")

9

Distance

D
et

ec
tio

n
pr

ob
ab

ili
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

Half normal, no adj.

Distance

D
et

ec
tio

n
pr

ob
ab

ili
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

Uniform, cosine adj.

Distance

D
et

ec
tio

n
pr

ob
ab

ili
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

Hazard rate, hermite adj.

The half-normal detection function with no adjustments has the smallest AIC which
provides support for this model. The ∆AIC values for all three models is small. In
general, you should get similar density estimates using different detection function models,
provided those models fit the data well, as in this example.

10

	Objectives
	Survey data
	Getting started in R
	Importing the data
	Summarising the perpendicular distances
	Using the Distance package
	Fitting a simple detection function model with ds
	Goodness of fit
	Specifying different detection functions
	References

