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Exercise 4. Variance estimation for systematic designs

In the lecture describing measures of precision, we explained that systematic survey
designs usually have the best variance properties, but obtaining good estimates of the
variance is a difficult problem for statisticians. In this exercise, we give an example of a
situation where the systematic design gives a density estimate with much better precision
than a random design. This means that the usual variance estimators used in the ds
function, which are based on a random design, that are far too high. The true variance is
low, but the estimated variance is high. We will see how to implement a post-stratification
scheme that enables us to get a better estimate of the variance. We also look at another
case to see that the unstratified variance estimates provided by ds are usually fine for a
systematic design: things only go wrong when there are strong trends in animal density,
especially when the strong trends are associated with changes in line length (e.g. the
highest densities always occur on the shortest lines, or vice versa).

We begin with a population and survey shown below. The data used for this exercise were
simulated on a computer: they are not real data. Note the characteristics for the data in
Figure 1: extreme trends with very high density on short lines and very low density on
long lines. Additionally, the systematic design has covered a fairly large proportion of
the survey area (the covered region is shaded). These are danger signals that the usual
ds variance estimators might not work well and a post-stratification scheme should be
considered.

1 Objectives
The aims of this exercise are to illustrate:

1. Default variance estimation,
2. Variance estimation with bootstrapping,
3. Post-stratification to improve variance estimation,
4. When post-stratification is not needed (optional).

2 Getting started
Don’t forget to load Distance if you haven’t already done so.
# Load packages
library(Distance)
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Figure 1: An example of survey data where there is a strong trend in density. The
systematically placed search strips are shaded. Axis units are in kilometres.

3 Basic (default) variance estimation
In the code below, the necessary data file is imported and a simple model is fitted and a
summary produced. Make a note of the CV of the density estimate - this is obtained using
the default (analytical) estimator in the ds function and is based on the assumption that
the lines were placed at random. This CV can then be compared with the CV estimates
obtained from alternative methods.
# Import data
encounter.rate1 <- system.file("extdata", "IntroDS_4.1.csv", package = "dsdata")
sysvar1 <- read.csv(file=encounter.rate1, header=TRUE)
conversion.factor <- convert_units("metre", "kilometre", "square kilometre")
# Fit a simple model
sysvar1.hn <- ds(data=sysvar1, key="hn", adjustment=NULL,

convert.units=conversion.factor)
# Summary
sysvar1.hn$dht$individuals$D
sysvar1.hn$dht$individuals$N

The true density and abundance are known (because the data were simulated): the true
abundance in the survey region was N = 1000 and D = 2000 animals per km2 (i.e. 1000
animals in an area of size A = 0.5km2). How do the point estimates compare with truth?
What do you think about the precision of the estimates?

4 Variance estimation with bootstrapping
Before starting the bootstrap, we create a function to harvest the abundance and density
estimates from each bootstrap replicate.
# Create a function to obtain abundance (N) and density (D) summaries
DNhat_summarize_indiv <- function(ests, fit) {
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return(data.frame(D=ests$individuals$D$Estimate,
N=ests$individuals$N$Estimate))

}

The following command performs the bootstrap.
# Bootstrap estimate of uncertainty
# Run the bootstrap (this can take a while if nboot is large!)
est.boot <- bootdht(model=sysvar1.hn, flatfile=sysvar1,

summary_fun=DNhat_summarize_indiv,
convert.units=conversion.factor, nboot=999)

The arguments for this command are:

• model - fitted detection function model object
• flatfile - data frame of the survey data
• summary_fun - function used to obtain the summary statistics from each bootstrap
• convert.units - conversion units for abundance estimation
• nboot - number of bootstrap samples to generate. Note, it can take a long time to

produce a large number of bootstraps and so perhaps try a small number at first.
# See the results
summary(est.boot)

The summary includes:

• Estimate - the median value of the bootstrap estimates
• se is the standard deviation of the bootstrap estimates
• lcl and ucl are the limits for a 95% confidence interval.
• cv is the coefficient of variation (CV = SE/Estimate)

Are the bootstrapped confidence intervals for abundance and density similar to the
analytical confidence intervals produced previously?

Recall that we have a particular situation in which we have systematically placed transects
which are unequal in length. Furthermore, there exists an east-west gradient in animal
density juxtaposed such that the shortest lines are those that pass through the portion
of the study region with the highest density. In the next section, we examine a process
by which we can use post-stratification to produce a better estimate of the variance in
estimated abundance.

5 Post-stratification to improve variance estimation
The estimation of encounter rate variance in Exercise 4.1 used estimators that assumed
the transect lines were randomly placed throughout the triangular region. In our case,
the transects were not random, but systematic and, in some circumstances, taking this in
account can substantially reduce the encounter rate variance. The data we are working
with is an example of this, where there are very high densities on the very shortest lines. In
samples of lines, collected using a completely random design, the sample, by chance, might
not contain any very short lines, or it might contain several. The variance is therefore very
high, because the density estimates will be greatly affected by how many lines fall into
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the short-line / high-density region: we will get very low density estimates if there are no
short lines, but very high density estimates if there are several short lines. By contrast, in
a systematic sample, we cover the region methodically and we will always get nearly the
same number of lines falling in the high density region. The systematic density variance is
therefore much lower than the random placement density variance. Although there is no
way of getting a variance estimate that is exactly unbiased for a systematic sample 1, we
can greatly improve on the random-based estimate by using a post-stratification scheme.

The post-stratification scheme works by grouping together pairs of adjacent lines from
the systematic sample and each pair of adjacent lines is grouped into a stratum. The
strata will improve variance estimation, because the systematic sample behaves more like
a stratified sample than a random sample. This encounter rate estimator is called ‘O2’
(Fewster et al. 2009) and is implemented in the dht2 function.
# Post-stratification - stratified variance estimation by grouping adjacent transects

# Ensure that Sample.Labels are numeric, this is required for O2 ordering
sysvar1$Sample.Label <- as.numeric(sysvar1$Sample.Label)

# Use the Fewster et al 2009, "O2" estimator
est.O2 <- dht2(sysvar1.hn, flatfile=sysvar1, strat_formula=~1,

convert_units=conversion.factor, er_est="O2")
print(est.O2, report="density")

Note that this estimator assumes that the numbering of the transects (in this example
Sample.Label takes values 1 to 20) has some geographical meaning (i.e. transect 1 is next
to 2 and 2 is next to 3 etc.). If this is not the case, then the user can manually define some
sensible grouping of transects and create a column called grouping in the data object.

6 Systematic designs where post-stratification is not
needed (optional)

The simulated population shown in Figure 2 does not exhibit strong trends across the
survey region, otherwise, the strip dimensions and systematic design are the same as for
the previous example. These data are stored in IntroDS_4.2.csv.

In the code below, these data are imported into R and a simple detection function model
is fitted. The default estimate of variance is then compared to that obtained using the
‘O2’ estimator (Fewster et al. 2009).
# When post-stratification isn't needed

# Import the data
encounter.rate2 <- system.file("extdata", "IntroDS_4.2.csv", package = "dsdata")
sysvar2 <- read.csv(file=encounter.rate2, header=TRUE)
# Ensure that Sample.Labels are numeric, for O2 ordering
sysvar2$Sample.Label <- as.numeric(sysvar2$Sample.Label)

1because it is effectively a sample of size 1- only the first line position was randomly chosen and the
rest followed on deterministically from there.
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Figure 2: An example of survey data that does not exhibit a trend in density. The
systematically placed search strips are shaded. Axis units are in kilometres.

# First fit a simple model
sysvar2.hn <- ds(sysvar2, key="hn", adjustment=NULL,

convert.units=conversion.factor)
# Obtain default estimates for comparison
sysvar2.hn$dht$individuals$D
sysvar2.hn$dht$individuals$N
# Now use Fewster et al 2009, "O2" estimator
est2.O2 <- dht2(sysvar2.hn, flatfile=sysvar2, strat_formula=~1,

convert_units=conversion.factor, er_est="O2")
print(est2.O2, report="both")

Did you see a difference in the CV and 95% confidence interval between the two estimators?

7 References
Fewster RM, Buckland ST, Burnham KP, Borchers DL, Jupp PE, Laake JL and Thomas
L (2009) Estimating the encounter rate in distance sampling. Biometrics 65:225-236
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Solution 4. Variance estimation for systematic designs

8 Basic (default) variance estimation
Recall the data for this example, in which we have a strong gradient in animal density
across our study region and at the same time we have a difference in the lengths of the
transects, such that short transects are in regions of high animal density and long transects
are in regions of low animal density.
library(Distance)
# Import data
encounter.rate1 <- system.file("extdata", "IntroDS_4.1.csv", package = "dsdata")
sysvar1 <- read.csv(file=encounter.rate1, header=TRUE)
conversion.factor <- convert_units("metre", "kilometre", "square kilometre")
# Fit a simple model
sysvar1.hn <- ds(data=sysvar1, key="hn", adjustment="cos",

convert.units=conversion.factor)
# Summary
sysvar1.hn$dht$individuals$D

## Label Estimate se cv lcl ucl df
## 1 Total 2044.592 566.3958 0.2770214 1161.012 3600.614 20.74468

sysvar1.hn$dht$individuals$N

## Label Estimate se cv lcl ucl df
## 1 Total 1022.296 283.1979 0.2770214 580.506 1800.307 20.74468

The point estimates are good (D̂ = 2, 044 animals per unit area and N̂ = 1, 022 - note the
size of the area) but the precision obtained with the default estimator is poor: estimated
abundance ranges from about 580 to 1,800 - a three-fold difference over which we are
uncertain. Given that our survey covered 40% of the triangular region and had a good
sample size (254 animals on 20 transects), this would be a disappointing result in practice.

9 Variance estimation with bootstrapping
Before starting the bootstrap, we create a function to harvest the abundance and density
estimates from each bootstrap sample.
# Create a function to obtain abundance (N) and density (D) summaries
DNhat_summarize_indiv <- function(ests, fit) {

return(data.frame(D=ests$individuals$D$Estimate,
N=ests$individuals$N$Estimate))

}

The following command performs the bootstrap.
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# Bootstrap estimate of uncertainty
# Run the bootstrap (this can take a while!)
est.boot <- bootdht(model=sysvar1.hn, flatfile=sysvar1,

summary_fun=DNhat_summarize_indiv,
convert.units=conversion.factor, nboot=99)

# See results
summary(est.boot)

## Bootstrap results
##
## Boostraps : 99
## Successes : 99
## Failures : 0
##
## Estimate se ucl lcl cv
## D 2075.84 688.55 3636.01 1008.62 0.33
## N 1037.92 344.27 1818.01 504.31 0.33

The bootstrap results are very similar to the analytical results, as we would expect,
because again this process assumed the transects were placed at random.

10 Post-stratification to improve variance estimation

## Post-stratification by O2 estimator

# ensure that Sample.Labels are numeric, for O2 ordering
sysvar1$Sample.Label <- as.numeric(sysvar1$Sample.Label)

# Using the Fewster et al 2009, "O2" estimator
est.O2 <- dht2(sysvar1.hn, flatfile=sysvar1,

strat_formula=~1, convert_units=conversion.factor, er_est="O2")
print(est.O2, report="density")

## Summary statistics:
## .Label Area CoveredArea Effort n k ER se.ER cv.ER
## Total 0.5 0.1922 9.61 254 20 26.431 1.459 0.055
##
## Density estimates:
## .Label Estimate se cv LCI UCI df
## Total 2044.592 162.914 0.08 1744.988 2395.636 75.871
##
## Component percentages of variance:
## .Label Detection ER
## Total 52.03 47.97

The precision of the estimated abundance has greatly improved in the post-stratified
analysis.
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It must be remembered that we have not made any change to our data by the post-
stratification; we are using getting a better estimate of the variance. In this case, the
increase in precision could make a fundamental difference to the utility of the survey: it
might make the difference between being able to make a management decision or not.
Usually, trends will not be as extreme as they are in this example and post-stratification
will not make a great difference. Such an example is illustrated in the next problem.

11 Systematic designs where post-stratification is
not needed (optional)

These data did not exhibit strong trends across the survey region and, hence, there are no
great differences between the CVs and 95% confidence intervals using the two methods.
# Import the data
encounter.rate2 <- system.file("extdata", "IntroDS_4.2.csv", package = "dsdata")
sysvar2 <- read.csv(file=encounter.rate2, header=TRUE)
# Ensure that Sample.Labels are numeric, for O2 ordering
sysvar2$Sample.Label <- as.numeric(sysvar2$Sample.Label)
# First fit a simple model
sysvar2.hn <- ds(sysvar2, key="hn", adjustment=NULL,

convert.units=conversion.factor)
# Obtain default estimates for comparison
sysvar2.hn$dht$individuals$D

## Label Estimate se cv lcl ucl df
## 1 Total 1954.016 160.5554 0.08216691 1657.275 2303.888 50.59549

sysvar2.hn$dht$individuals$N

## Label Estimate se cv lcl ucl df
## 1 Total 977.0078 80.27771 0.08216691 828.6377 1151.944 50.59549

# Now use Fewster et al 2009, "O2" estimator
est2.O2 <- dht2(sysvar2.hn, flatfile=sysvar2, strat_formula=~1,

convert_units=conversion.factor, er_est="O2")
print(est2.O2, report="density")

## Summary statistics:
## .Label Area CoveredArea Effort n k ER se.ER cv.ER
## Total 0.5 0.2058 10.29 252 20 24.49 1.594 0.065
##
## Density estimates:
## .Label Estimate se cv LCI UCI df
## Total 1954.015 162.491 0.083 1653.804 2308.723 49.172
##
## Component percentages of variance:
## .Label Detection ER
## Total 38.76 61.24
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