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Centre for Research into Ecological and Environmental Modelling

Exercise 8. Covariates in the detection function

This exercise consists of four datasets of increasing difficulty. The first problem will
show you the rudiments of conducting a multiple covariate distance sampling (MCDS)
analysis for a line transect survey. The second problem, MCDS with point transects, is
more complicated and (using the functionality available in R) also includes some basic
exploratory analysis of the covariates. Problems 3 and 4 are optional but will take you
deeper into the heart of understanding multiple covariates.

1 Objectives
The objectives of this exercise are to

1. practice including covariates in the detection function for line and point transects
2. select between candidate models
3. undertake an exploratory analysis of covariates
4. critically appraise the fitted model
5. investigate conversion units.

2 Covariates in line transect detection functions: a
whale of a dataset

Rather than relaxing here in the serenity and tranquility of the Scottish coast, image
instead that you are a research biologist collecting line transect distance sampling data
during December on gray whales as they migrated through the Aleutian chain near Unimak
Pass en route to their wintering grounds off Baja California (some luckier, more senior
researcher, got the job of data collection on their wintering grounds). These data will
now be the focus of your attention for this exercise examining the potential utility of
covariates in explaining variation in animal detectability.

Detections were of individuals (not groups), and you chose to record not only distance, but
also time of observation (at this latitude and at this time of year, the crew was restricted
to making observations between 1000 and 1500). However, because of the low sun angles
during much of this time, there was some reason to believe that time of day might play a
role in whale detectability. Under extreme weather conditions, observer motion sickness
can influence the performance of the observers. An additional covariate, ‘motion sickness
tablet effective dosage at time of observation (MSTDO)’ was recorded each time a whale
was detected.

The data are available for your inspection in the dsdata package as follows:
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library(Distance)
library(dsdata)
# Select data
data(unimak)
# Check data
head(unimak, n=3)

Notice the extreme precision with which the perpendicular distances were measured (how
do you suppose this could happen on a rolling ship in the Bering Sea?). We can check
what units have been used by printing the units associated with these data: a ‘units’
object is available for each dataset - just use xxx_units where xxx is the name of the
dataset as shown below.
# What are the units
unimak_units

Previously, we have converted metres to kilometres which is a simple conversion. Here we
have a mixture of kilometres and miles, but no problem for convert_units().
conversion.factor <- convert_units("kilometer", "mile", "square mile")

A simple half-normal detection function - this command should be familiar by now.
df.hn <- ds(unimak, key="hn", convert.units=conversion.factor)

To add a covariate in the detection function, we need to specify the covariate in the
formula argument. In the command below, MSTDO is included - note the ‘~’ in the
formula.
# Include MSTDO in detection function
df.hn.mstdo <- ds(unimak, key="hn", formula=~MSTDO,

convert.units=conversion.factor)

The AIC values for these models can be compared using the AIC command:
AIC(df.hn, df.hn.mstdo)

The other possible combinations of covariates are

• Hour
• MSTDO + Hour.

Try a few different models, not forgetting about truncation and decide on a final model.

Don’t forget that you can look at the detection function using the plot command:
plot(df.hn.mstdo)

Why don’t the points lie on the solid line?

If you have been successful in performing the analysis of this dataset (which can now
be revealed to have been simulated), you can continue to sharpen your skills in using
covariates in your analysis of distance sampling data by exploring the following problems.
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3 Covariates in point transect detection functions:
Amakihi

In this problem, we illustrate fitting multiple covariate distance sampling (MCDS) models
to point transect data using a bird survey from Hawaii: data on an abundant species, the
Hawaii amakihi (Hemignathus virens) is used. This practical is based on the case study in
Buckland et al. (2015) which duplicates the analysis in Marques et al. (2007). This set of
data is included in Distance as one of the Sample Projects and so can be accessed easily:
data(amakihi)
# See what columns it contains
head(amakihi, n=3)

These data include:

• Study.Area - name of the study area
• Region.Label - survey dates which are used as ‘strata’
• Sample.Label - point transect identifier
• Effort - survey effort (1 for all points because each point was visited once)
• distance - radial distance of detection from observer (meters)
• OBs - initials of the observer
• MAS - minutes after sunrise
• HAS - hour after sunrise

Note that the Area column is always zero, hence, detection functions can be fitted to
the data, but bird abundance cannot be estimated. The covariates to be considered for
possible inclusion into the detection function are OBs, MAS and HAS.

3.0.1 Exploratory data analysis

It is important to gain an understanding of the data prior to fitting detection functions
(Buckland et al. 2015). With this in mind, preliminary analysis of distance sampling data
involves:

• assessing the shape of the collected data,
• considering the level of truncation of distances, and
• exploring patterns in potential covariates.

We begin by assessing the distribution of distances to decide on a truncation distance.
hist(amakihi$distance)

To see if there are differences in the distribution of distances recorded by the different
observers and in each hour after sunrise, boxplots can be used. Note how the ~ symbol is
used to define the discrete groupings (i.e. observer and hour).
# Boxplots by obs
boxplot(amakihi$distance~amakihi$OBs, xlab="Observer", ylab="Distance (m)")
# Boxplots by hour after sunrise
boxplot(amakihi$distance~amakihi$HAS, xlab="Hour", ylab="Distance (m)")

The components of the boxplot are:
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• the thick black line indicates the median
• the lower limit of the box is the first quartile (25th percentile) and the upper limit

is the third quartile (75th percentile)
• the height of the box is the interquartile range (75th - 25th quartiles)
• the whiskers extend to the most extreme points which are no more than 1.5 times

the interquartile range.
• dots indicate ‘outliers’ if there are any, i.e. points beyond the range of the whiskers.

For minutes after sunrise (a continuous variable), we create a scatterplot of MAS (on the
x-axis) against distances (on the y-axis). The plotting symbol (or character) is selected
with the argument pch:
# Plot of MAS vs distance (using dots)
plot(x=amakihi$MAS, y=amakihi$distance, xlab="Minutes after sunrise",

ylab="Distance (m)", pch=20)

You may also want to think about potential collinerity (linear relationship) between
the covariates - if collinear variables are included in the detection function, they will
be explaining some of the same variation in the distances and this will reduce their
importance as a potential covariate. How might you investigate the relationship between
HAS and MAS?

From these plots can you tell if any of the covariates will be useful in explaining the
distribution of distances?

3.1 Adjusting the raw covariates
We would like to treat OBs and HAS as factor variables as in the original analysis; OBs
is, by default, treated as a factor variable because it consists of characters rather than
numbers. HAS, on the other hand, consists of numbers and so by default would be treated
as a continuous variable (i.e. non-factor). That is fine if we want the effect of HAS to be
monotonic (i.e. detectability either increases or decreases as a function of HAS). If we want
HAS to have a non-linear effect on detectability, then we need to indicate to R to treat it
as a factor as shown below.
# Convert HAS to a factor
amakihi$HAS <- factor(amakihi$HAS)

The next adjustment is to change the reference level of the observer and hour factor
covariates - the only reason to do this is to get the estimated parameters in the detection
function to match the parameters estimated in Marques et al (2007). By default R uses
the first factor level but by using the relevel function, this can be changed:
# Set the reference level
amakihi$OBs <- relevel(amakihi$OBs, ref="TKP")
amakihi$HAS <- relevel(amakihi$HAS, ref="5")

One final adjustment, and more subtle, is a transformation of the continuous covariate
MAS. We are considering three possible covariates in our detection function: OBs, HAS and
MAS. The first two variables, OBs and HAS, are both factor variables, and so, essentially, we
can think of them as taking on values between 1 and 3 in the case of OBS, and 1 to 6 in the
case of HAS. However, MAS can take on values from -18 (detections before sunrise) to >300
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and the disparity in scales of measure between MAS and the other candidate covariates
can lead to difficulties in the performance of the optimizer fitting the detection functions
in R. The solution to the difficulty is to scale MAS such that it is on a scale (approx. 1 to
5) comparable with the other covariates.

Dividing all the MAS measurements by the standard deviation (function sd) of those
measurements accomplishes the desired compaction in the range of the MAS covariate
without changing the shape of the distribution of MAS values. The na.rm=TRUE argument
ensures that any missing values are ignored.
# Rescale MAS by dividing by standard deviation
amakihi$MAS <- amakihi$MAS/sd(amakihi$MAS, na.rm=TRUE)

Check what this command has done by looking at a summary of the adjusted MAS:
summary(amakihi$MAS)

3.1.1 Candidate models

With three potential covariates, there are 8 possible models for the detection function:

• No covariates
• OBs
• HAS
• MAS
• OBs + HAS
• OBs + MAS
• HAS + MAS
• OBs + HAS + MAS

Even without considering covariates there are also several possible key function/adjustment
term combinations available: if all key function/covariate combinations are considered the
number of potential models is large. Note that covariates are not allowed if a uniform key
function is chosen and if covariate terms are included, adjustment terms are not allowed.
Even with these restrictions, it is not best practice to take a scatter gun approach to
detection function model fitting. Buckland et al. (2015) considered 13 combinations of
key function/covariates. Here, we look at a subset of these.

Fit a hazard rate model with no covariates or adjustment terms and make a note of the
AIC. Note, that 10% of the largest distances are truncated - you may have decided on a
different truncation distance.
conversion.factor <- convert_units("meter", NULL, "hectare")
amak.hr <- ds(amakihi, transect="point", key="hr", truncation="10%",

adjustment=NULL, convert.units = conversion.factor)

Make a note of the AIC for this model.

Now fit a hazard rate model with OBs as a covariate in the detection function and make a
note of the AIC. Has the AIC reduced by including a covariate?
conversion.factor <- convert_units("meter", NULL, "hectare")
amak.hr.obs <- ds(amakihi, transect="point", key="hr", formula=~OBs,
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truncation="10%", convert.units = conversion.factor)

Fit a hazard rate model with OBs and HAS in the detection function:
amak.hr.obs.has <- ds(amakihi, transect="point", key="hr", formula=~OBs+HAS,

truncation="10%", convert.units = conversion.factor)

Try fitting other possible formula and decide which model is best in terms of AIC. To
quickly compare AIC values from different models, use the AIC command as follows (note
only models with the same truncation distance can be compared):
# AIC values
AIC(amak.hr, amak.hr.obs, amak.hr.obs.has)

Another useful function is summarize_ds_models - this has the advantage of ordering the
models by AIC (smallest to largest).
# Compare models
summarize_ds_models(amak.hr, amak.hr.obs, amak.hr.obs.has)

Once you have decided on a model, plot your selected detection function.

4 More MCDS with line transects: ETP dolphins
(optional)

In this problem we have a sample of Eastern Tropical Pacific (ETP) spotted dolphin
sightings data, collected by observers placed on board tuna vessels (the data were kindly
made available to us by the Inter-American Tropical Tuna Commission - IATTC). In the
ETP, schools of yellow fin tuna commonly occur with schools (or groups) of dolphins, and
so vessels fishing for tuna often search for dolphins in the hopes of also locating tuna.
For each dolphin school detected by the tuna vessels, the observer recorded the species,
sighting angle and distance (later converted to perpendicular distance and truncated at
5 nautical miles), school size and a number of covariates associated with each detected
school. Many of these covariates potentially affect the detection function, as they reflect
how the search was being carried out.

A variety of search methods were used to find the dolphins, and for these data were (the
numbers in brackets are the codes used to record the data):

• 20x binoculars from the crow’s nest (0)
• 20x binoculars from another location on the vessel (2),
• a helicopter, (3)
• ‘bird radar’, high power radars which are able to detect seabirds flying above the

dolphin schools (5).

Some of these methods may have a wider range of search than the others, and so it is
possible that the effective strip width varies according to the method being used.

For each detection the initial cue type was recorded. This included:

• birds flying above the school (1),
• splashes on the water (2),
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• floating objects such as logs (4),
• some other unspecified cue (3).

Another covariate that potentially affected the detection function was sea state, as
measured by Beaufort. In rougher conditions (i.e. higher Beaufort levels), visibility and/or
detectability may be reduced. For this example, Beaufort levels were grouped into two
categories, the first including Beaufort values ranging from 0 to 2 (coded as 1) and the
second containing values from 3 to 5 (coded as 2).

The sample data encompasses sightings made over a three month period: June, July and
August (months 6, 7 and 8, respectively).

4.1 Analysis
The data are available in the dsdata package:
# Load data
data(ETP_Dolphin)
# Check data
head(ETP_Dolphin, n=3)

Start by running a set of conventional distance analyses. Are there any problems in
the data and if so how might you mitigate them? (Hint - try dividing the histogram of
distances into a large number of intervals.)

As there are a number of potential covariates to be used in this example (i.e. search
method, cue, Beaufort class and month), try fitting models with different covariates and
combinations of the covariates. All of the covariates in this example are factor covariates
except group size and because they have numeric codes, use the factor function to let R
know to treat them as factors.

Note that both distances and transect lengths were recorded in nautical miles and area in
nautical miles squared and so the argument convert_units does not need to be specified.

Keep in mind that this is a large dataset (> 1000 observations), and hence estimation
may take a while. You will likely end up with quite a few models as there are several
potential covariates and no ‘right’ answers. Discuss your choice of final model (or models)
with your neighbours - did you make the same choices?

5 More MCDS with point transects: Savannah spar-
row (optional)

Point transect surveys were conducted in Arapaho National Wildlife Refuge, Colorado,
USA, in 1980 and 1981 and this exercise concerns the data collected on Savannah sparrows.
The study area was divided into smaller regions (called ‘pastures’). The data are available
in the dsdata package as follows:
library(dsdata)
data(Savannah_sparrow_1980)
data(Savannah_sparrow_1981)
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Distances were recorded in metres and area in hectares.
conversion.factor <- convert_units("meter", NULL, "hectare")

Given that this data object has a long name, these objects can be renamed if you wish:
for example,
# Rename data
sav1980 <- Savannah_sparrow_1980

For each data set,

1. consider an appropriate truncation distance,
2. fit a detection function with out any covariates
3. include ‘pasture’ (Region.Label) as a covariate in the detection function
4. use AIC to select a model, and
5. estimate density (in birds per hectare) for your selected model.

What would be an alternative to including pasture as a covariate in the detection function
to analyse these data?

6 References
Buckland ST, Rexstad ER, Marques TA and Oedekoven CS (2015) Distance sampling:
methods and applications. Springer

Knopf FL, Sedgwick JA, and Cannon RW. (1988) Guild structure of a riparian avifauna
relative to seasonal cattle grazing. Journal of Wildlife Management 52:280–290.

Marques TA, Thomas L, Fancy SG and Buckland ST (2007) Improving estimates of bird
density using multiple covariate distance sampling. The Auk 124:1229-1243
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Solution 8. Covariates in the detection function

7 Covariates in line transect detection functions: a
whale of a dataset

library(Distance)
library(dsdata)
# Select data
data(unimak)
conversion.factor <- convert_units("kilometer", "mile", "square mile")

An example of the sort of analysis you might have performed is given below. I first
tried simple half-normal and hazard rate models without covariates, and found that the
half-normal model had a lower AIC. I then tried the MSTDO covariate and hour covariates
separately (as non-factor covariates). The analysis with MSTDO had a much lower AIC,
but the analysis with hour actually had a higher AIC than the analysis without covariates.
I tried an analysis with both MSTDO and hour, but this had a higher AIC than MSTDO
alone. I concluded that the MSTDO covariate was important and the hour covariate was
not.
# Fit basic key functions only
df.hn <- ds(unimak, key="hn", convert.units=conversion.factor)
df.hr <- ds(unimak, key="hr", convert.units=conversion.factor)

## Fit covariates in detection functions
# MSTDO
df.hn.mstdo <- ds(unimak, formula=~MSTDO, convert.units=conversion.factor)
# Hour
df.hn.hour <- ds(unimak, formula=~Hour, convert.units=conversion.factor)
# MSTDO + hour
df.hn.mstdo.hour <- ds(unimak, formula=~MSTDO+Hour,

convert.units=conversion.factor)
# Compare model fits by AIC
AIC(df.hn, df.hr, df.hn.mstdo, df.hn.hour, df.hn.mstdo.hour)

## df AIC
## df.hn 1 123.2821
## df.hr 2 125.3153
## df.hn.mstdo 2 111.2341
## df.hn.hour 2 154.8669
## df.hn.mstdo.hour 3 156.8669

Although these data did not appear to need any truncation, I briefly confirmed that the
same results were obtained with 10% truncation.
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# Try truncating 10% of longest perp. distances
df.hn.trunc <- ds(unimak, key="hn", convert.units=conversion.factor,

truncation="10%")
df.hr.trunc <- ds(unimak, key="hr", convert.units=conversion.factor,

truncation="10%")

df.hn.mstdo.trunc <- ds(unimak, key="hn", formula=~MSTDO,
convert.units=conversion.factor, truncation="10%")

df.hn.hour.trunc <- ds(unimak, key="hn", formula=~Hour,
convert.units=conversion.factor, truncation="10%")

df.hn.mstdo.hour.trunc <- ds(unimak, key="hn", formula=~MSTDO+Hour,
convert.units=conversion.factor, truncation="10%")

AIC(df.hn.trunc, df.hr.trunc, df.hn.mstdo.trunc, df.hn.hour.trunc,
df.hn.mstdo.hour.trunc)

## df AIC
## df.hn.trunc 1 80.99018
## df.hr.trunc 2 82.73318
## df.hn.mstdo.trunc 2 76.27399
## df.hn.hour.trunc 2 91.36957
## df.hn.mstdo.hour.trunc 3 93.36957

Finally, I looked at the fitted detection function plots from the selected models.
# Plot detection functions
par(mfrow=c(1,2))
plot(df.hn.mstdo, main="No truncation")
plot(df.hn.mstdo.trunc, main="Truncation 10%")
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The points indicate the detection probability for individual detections at the recorded
perpendicular distance and covariate value (MSTDO in this case).

8 Covariates in point transect detection functions:
Amakihi

# Load data
data(amakihi)

hist(amakihi$distance, xlab="Radial distances (m)",
main="Amakihi point transect data.")
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Amakihi point transect data.
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A truncation distance of 82.5 m was chosen by Marques et al. (2007).

Plots of the covariates were generated. Not surprisingly, MAS and HAS are correlated and
so we need to be cautious of including them in the same model.
# Plots of covariates
par(mfrow=c(2,2))
# Boxplots by obs
boxplot(amakihi$distance~amakihi$OBs, xlab="Observer", ylab="Distance (m)")
# Boxplots by hour after sunrise
boxplot(amakihi$distance~amakihi$HAS, xlab="Hour", ylab="Distance (m)")
# Plot of MAS vs distance (using dots)
plot(x=amakihi$MAS, y=amakihi$distance, xlab="Minutes after sunrise",

ylab="Distance (m)", pch=20)
# Plot of HAS vs MAS (using dots)
plot(x=amakihi$HAS, y=amakihi$MAS, xlab="Hours after sunrise",

ylab="Minutes after sunrise", pch=20)
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# Adjusting the raw data
# Convert HAS to a factor
amakihi$HAS <- factor(amakihi$HAS)
# Set the reference level
amakihi$OBs <- relevel(amakihi$OBs, ref="TKP")
amakihi$HAS <- relevel(amakihi$HAS, ref="5")

The re-scaling of MAS has converted it from a variable with values between -18 and 307 to
values between -0.23 and 4.04.
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# Rescale MAS by dividing by standard deviation
amakihi$MAS <- amakihi$MAS/sd(amakihi$MAS, na.rm=TRUE)
summary(amakihi$MAS)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -0.2365 1.0248 1.7999 1.8508 2.6145 4.0335 2

The model selected by Marques et al. (2007) used a hazard rate key function and included
observer and minutes after sunrise - this model is fitted below. The PDF plot is shown.
# Fit model selected by Marques et al (2007)
amak.hr.obs.mas <- ds(amakihi, transect="point", key="hr", formula=~OBs+MAS,

truncation=82.5)

# Plot selected model
plot(amak.hr.obs.mas, main="Model with OBs and MAS", pch=".", pdf=TRUE)
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To see more sophisticated examples of plotting the detection function for the selected
model, see the code accompanying Buckland et al. (2015) Hawaiian Amakihi case study.

9 More MCDS with line transects: ETP dolphins
(optional)

We have not provided a comprehensive analysis of these data but have highlighted a few
general feature of these data.
# Read in the data
data(ETP_Dolphin)
# Look at data
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head(ETP_Dolphin, n=3)

## Region.Label Area Sample.Label Effort object distance LnCluster Month
## 1 Default 0 1 1 1 2.25 6.792344 6
## 2 Default 0 1 1 2 3.15 7.080868 6
## 3 Default 0 1 1 3 3.00 5.181784 6
## Beauf.class Cue.type Search.method size Study.Area
## 1 2 3 0 891 Dolphin
## 2 2 1 2 1189 Dolphin
## 3 2 1 2 178 Dolphin
# Check conversion units
ETP_Dolphin_units

## Variable Units Conversion
## 1 Effort nautical mile 1852
## 2 distance nautical mile 1852
## 3 Area square nautical mile 3429904

To obtain an overall impression of the data, it is useful to fit a histogram with many
intervals.
# Histogram of distances with lots of intervals
hist(ETP_Dolphin$distance, nclass=50, xlab="Distance (nm)",

main="Tropical Pacific dolphin survey perpendicular distances")

Tropical Pacific dolphin survey perpendicular distances
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The spikes in the histogram suggest that distances have been rounded to zero and possibly
other values. To mitigate these problems, the distances could be binned although we do
not do so in the analysis below. The distances have already been truncated at 5 nm and
so we will not truncate distances further.
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# Boxplots of distances against factor covariates
par(mfrow=c(2,2))
# Search method
boxplot(ETP_Dolphin$distance~ETP_Dolphin$Search.method, xlab="Search method",

ylab="Distance (nm)")
# Cue
boxplot(ETP_Dolphin$distance~ETP_Dolphin$Cue.type, xlab="Cue", ylab="Distance (nm)")
# Beaufort
boxplot(ETP_Dolphin$distance~ETP_Dolphin$Beauf.class, xlab="Beaufort class",

ylab="Distance (nm)")
# Month
boxplot(ETP_Dolphin$distance~ETP_Dolphin$Month, xlab="Month", ylab="Distance (nm)")
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To decide whether to fit a half normal or a hazard rate key function, each of these is tried
in turn.
# Fit basic detection functions
# Half normal
etp.hn <- ds(ETP_Dolphin, key="hn", adjustment=NULL)
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# Hazard rate
etp.hr <- ds(ETP_Dolphin, key="hr", adjustment=NULL)
# Compare these fits
AIC(etp.hn, etp.hr)

## df AIC
## etp.hn 1 3377.489
## etp.hr 2 3365.915

The AIC values suggest that hazard rate key function is preferable to the half normal and
so this will be used as the key function in the MCDS models. Each covariate is added in
turn.
# Specify factors as below or include in formula
ETP_Dolphin$Search.method <- factor(ETP_Dolphin$Search.method)
# Add covariates to hazard rate detection function
# Search method (factor)
etp.hr.search <- ds(ETP_Dolphin, key="hr", formula=~Search.method)
# Cue type (factor)
etp.hr.cue <- ds(ETP_Dolphin, key="hr", formula=~factor(Cue.type))
# Beaufort class (factor)
etp.hr.bf <- ds(ETP_Dolphin, key="hr", formula=~factor(Beauf.class))
# Month (factor)
etp.hr.month <- ds(ETP_Dolphin, key="hr", formula=~factor(Month))

# Compare models (using pretty printing)
pander::pander(summarize_ds_models(etp.hr, etp.hr.search, etp.hr.cue, etp.hr.bf,

etp.hr.month, output = "plain"),
caption="ETP dolphin model selection.")

Table 1: ETP dolphin model selection. (continued below)

Model Key function Formula C-vM p-value
2 etp.hr.search Hazard-rate ~Search.method 0.3881
3 etp.hr.cue Hazard-rate ~factor(Cue.type) 0.4494
5 etp.hr.month Hazard-rate ~factor(Month) 0.4942
1 etp.hr Hazard-rate ~1 0.4608
4 etp.hr.bf Hazard-rate ~factor(Beauf.class) 0.4736

Average detectability se(Average detectability) Delta AIC
2 0.5838 0.03602 0
3 0.5875 0.03913 23.31
5 0.5933 0.03893 24.26
1 0.6006 0.03837 26.14
4 0.6015 0.0385 27.99
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Based on the AIC, it seems as though the model including search method was preferable
and we could continue the model selection process by looking at models with two covariates.
However, before going on it is worth looking at the search method model in more detail.
If we look at the detection function parameters for this model:
# Look at detection function part of the model object
etp.hr.search$ddf

##
## Distance sampling analysis object
##
## Summary for ds object
## Number of observations : 1090
## Distance range : 0 - 5
## AIC : 3339.775
##
## Detection function:
## Hazard-rate key function
##
## Detection function parameters
## Scale coefficient(s):
## estimate se
## (Intercept) 0.3355287 0.2072042
## Search.method2 0.3208253 0.2112955
## Search.method3 3.1275278 78.6848803
## Search.method5 0.2430549 0.5378446
##
## Shape coefficient(s):
## estimate se
## (Intercept) 0.07828303 0.1387478
##
## Estimate SE CV
## Average p 0.5837971 0.03601616 0.06169295
## N in covered region 1867.0871295 121.16047848 0.06489278

we see that the estimated scale coefficient for search method 3 is substantially larger than
the estimated scale coefficients for other methods. The effect this has on the detection
function is clearly seen in the detection function plot.
# Plot search method detection function
plot(etp.hr.search, pch=".")
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Search method 3 indicated that the detection was from a helicopter and this detection
function suggests that all dolphin schools out to 5 nm were being detected and so detection
does not decrease as distance increases. One assumption of MCDS is that the perpendicular
distance distributions of the covariate factor levels have the same shape and so it may be
worth refitting the models but excluding the observations made by the helicopter.

10 More MCDS with point transects: Savannah
sparrow (optional)

The question here was whether to include pasture as a covariate in the detection function.
# Load libraries
library(dsdata)
# Savannah sparrow 1980
data(Savannah_sparrow_1980)
sav1980 <- Savannah_sparrow_1980
# Check data
head(sav1980, n=3)

## Region.Label Area Sample.Label Effort object distance Study.Area
## 1 PASTURE 1 1 POINT 1 1 NA NA SASP 1980
## 2 PASTURE 1 1 POINT 2 1 NA NA SASP 1980
## 3 PASTURE 1 1 POINT 3 1 NA NA SASP 1980
# Histogram of distances with lots of bins
hist(sav1980$distance, nclass=20, xlab="Distance (m)",

main="Savannah sparrow radial distances 1980")

19



Savannah sparrow radial distances 1980

Distance (m)

F
re

qu
en

cy

0 20 40 60 80

0
10

20
30

40

conversion.factor <- convert_units("meter", NULL, "hectare")

A truncation distance of 55m was chosen. The half normal and hazard rate functions
were tried in turn, allowing AIC selection of cosine adjustment terms, then pasture was
included as a covariate in the detection function.
# Fit different detection functions, truncation at 55m
# Half-normal
sav1980.hn <- ds(data=sav1980, key="hn", adjustment="cos", truncation=55,

transect="point", convert.units=conversion.factor)
# Hazard
sav1980.hr <- ds(data=sav1980, key="hr", adjustment="cos", truncation=55,

transect="point", convert.units=conversion.factor)

# Half-normal with pasture covariate
sav1980.hn.region <- ds(data=sav1980, key="hn", truncation=55,

transect="point", convert.units=conversion.factor,
formula=~Region.Label)

# Hazard with pasture covariate
sav1980.hr.region <- ds(data=sav1980, key="hr", truncation=55,

transect="point", convert.units=conversion.factor,
formula=~Region.Label)

# Select between these models
AIC(sav1980.hn, sav1980.hr, sav1980.hn.region, sav1980.hr.region)

## df AIC
## sav1980.hn 2 2126.228
## sav1980.hr 3 2127.883
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Figure 1: Note different PDF shapes caused by the pasture covariate.

## sav1980.hn.region 3 2125.033
## sav1980.hr.region 4 2130.447

The half normal model with pasture as a covariate had a marginally smaller AIC than
the half normal model without pasture. The plots and estimates are shown below.
# Plot results of selected model
plot(sav1980.hn.region, pch=".", pdf=TRUE)

# Summarise results for selected model
summary(sav1980.hn.region)

##
## Summary for distance analysis
## Number of observations : 271
## Distance range : 0 - 55
##
## Model : Half-normal key function
## AIC : 2125.033
##
## Detection function parameters
## Scale coefficient(s):
## estimate se
## (Intercept) 3.17237910 0.09850509
## Region.LabelPASTURE 2 -0.20459998 0.11106008
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## Region.LabelPASTURE 3 -0.03287325 0.12340874
##
## Estimate SE CV
## Average p 0.2896556 0.01973458 0.06813119
## N in covered region 935.5938568 79.88888250 0.08538842
##
## Summary statistics:
## Region Area CoveredArea Effort n k ER se.ER
## 1 PASTURE 1 1 117.8411 124 59 124 0.4758065 0.07009015
## 2 PASTURE 2 1 119.7418 126 121 126 0.9603175 0.09521957
## 3 PASTURE 3 1 116.8908 123 91 123 0.7398374 0.07467322
## 4 Total 3 354.4738 373 271 373 0.7265416 0.04772999
## cv.ER
## 1 0.14730811
## 2 0.09915427
## 3 0.10093193
## 4 0.06569478
##
## Abundance:
## Label Estimate se cv lcl ucl df
## 1 PASTURE 1 1.430165 0.3084015 0.21564058 0.9403512 2.175114 353.1254
## 2 PASTURE 2 4.116174 0.5643816 0.13711317 3.1470035 5.383816 329.2717
## 3 PASTURE 3 2.345638 0.3719019 0.15855041 1.7207006 3.197546 375.0930
## 4 Total 7.891977 0.7427181 0.09411054 6.5625849 9.490665 537.6087
##
## Density:
## Label Estimate se cv lcl ucl df
## 1 PASTURE 1 1.430165 0.3084015 0.21564058 0.9403512 2.175114 353.1254
## 2 PASTURE 2 4.116174 0.5643816 0.13711317 3.1470035 5.383816 329.2717
## 3 PASTURE 3 2.345638 0.3719019 0.15855041 1.7207006 3.197546 375.0930
## 4 Total 2.630659 0.2475727 0.09411054 2.1875283 3.163555 537.6087

A similar process was conducted for the 1981 data: a truncation distance of 55m was
again used.
# Savannah sparrow 1981
data(Savannah_sparrow_1981)
# Rename
sav1981 <- Savannah_sparrow_1981
conversion.factor <- convert_units("meter", NULL, "hectare")

# Fit alternative models
# Half-normal detection function, truncation 55m
sav1981.hn <- ds(data=sav1981, key="hn", adjustment="cos", truncation=55,

transect="point", convert.units=conversion.factor)
# Hazard rate
sav1981.hr <- ds(data=sav1981, key="hr", adjustment="cos", truncation=55,

transect="point", convert.units=conversion.factor)
# Half normal with pasture
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1981 sparrows by pasture.

Figure 2: Stronger influence of pasture covariate seen here.

sav1981.hn.region <- ds(data=sav1981, key="hn", truncation=55,
transect="point", convert.units=conversion.factor,
formula=~Region.Label)

# Hazard rate with pasture
sav1981.hr.region <- ds(data=sav1981, key="hr", truncation=55,

transect="point", convert.units=conversion.factor,
formula=~Region.Label)

# Compare models
AIC(sav1981.hn, sav1981.hr, sav1981.hn.region, sav1981.hr.region)

## df AIC
## sav1981.hn 1 1266.358
## sav1981.hr 2 1267.335
## sav1981.hn.region 4 1261.684
## sav1981.hr.region 5 1260.638

For 1981, there was a clear preference for including pasture as a covariate in the detection
function but little to choose from between the half normal and hazard rate key function.
For comparability with 1980, the plots and results below are for the half normal model
although AIC showed a slight preference for the hazard rate model. The differences
in detection between pastures can easily be seen and this is reflected in the estimated
densities (birds per hectare).
# Plot results of selected model
plot(sav1981.hn.region, pch=".", pdf=TRUE, main="1981 sparrows by pasture.")
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# Summary of results for selected model
summary(sav1981.hn.region)

##
## Summary for distance analysis
## Number of observations : 162
## Distance range : 0 - 55
##
## Model : Half-normal key function
## AIC : 1261.684
##
## Detection function parameters
## Scale coefficient(s):
## estimate se
## (Intercept) 2.9440439 0.1110264
## Region.LabelPASTURE 1 0.7362729 0.3728560
## Region.LabelPASTURE 2 0.1660991 0.1525319
## Region.LabelPASTURE 3 0.2703068 0.1791860
##
## Estimate SE CV
## Average p 0.3435483 0.03716055 0.1081669
## N in covered region 471.5494106 59.62867919 0.1264527
##
## Summary statistics:
## Region Area CoveredArea Effort n k ER se.ER cv.ER
## 1 PASTURE 0 1 95.03318 100 31 100 0.310 0.05448566 0.17576019
## 2 PASTURE 1 1 95.03318 100 32 100 0.320 0.06175874 0.19299605
## 3 PASTURE 2 1 95.03318 100 51 100 0.510 0.08225975 0.16129363
## 4 PASTURE 3 1 95.03318 100 48 100 0.480 0.07174590 0.14947063
## 5 Total 4 380.13271 400 162 400 0.405 0.03435678 0.08483156
##
## Abundance:
## Label Estimate se cv lcl ucl df
## 1 PASTURE 0 1.3887551 0.3779452 0.2721468 0.8203856 2.350895 255.9018
## 2 PASTURE 1 0.5241861 0.1818325 0.3468855 0.2698808 1.018120 250.9332
## 3 PASTURE 2 1.6980682 0.4058401 0.2390011 1.0674967 2.701119 251.7568
## 4 PASTURE 3 1.3509357 0.3545938 0.2624801 0.8125802 2.245966 253.0328
## 5 Total 4.9619451 0.6827512 0.1375975 3.7903643 6.495655 356.9874
##
## Density:
## Label Estimate se cv lcl ucl df
## 1 PASTURE 0 1.3887551 0.3779452 0.2721468 0.8203856 2.350895 255.9018
## 2 PASTURE 1 0.5241861 0.1818325 0.3468855 0.2698808 1.018120 250.9332
## 3 PASTURE 2 1.6980682 0.4058401 0.2390011 1.0674967 2.701119 251.7568
## 4 PASTURE 3 1.3509357 0.3545938 0.2624801 0.8125802 2.245966 253.0328
## 5 Total 1.2404863 0.1706878 0.1375975 0.9475911 1.623914 356.9874

In these models, the detection functions have been fitted to all the detections within the
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study region (for each year). An alternative would be to fit separate detection functions
within each pasture (specified in Region.Label), provided there are enough detections.
This would allow different shape detection functions to be fitted in each pasture (providing
this is a reasonable thing to do).

25


	Objectives
	Covariates in line transect detection functions: a whale of a dataset
	Covariates in point transect detection functions: Amakihi
	Exploratory data analysis
	Adjusting the raw covariates
	Candidate models


	More MCDS with line transects: ETP dolphins (optional)
	Analysis

	More MCDS with point transects: Savannah sparrow (optional)
	References
	Covariates in line transect detection functions: a whale of a dataset
	Covariates in point transect detection functions: Amakihi
	More MCDS with line transects: ETP dolphins (optional)
	More MCDS with point transects: Savannah sparrow (optional)

